
 AVOCA GmbH

Mutual Programming
A Practice to Improve Software

Development Productivity

Status: Approved

Author(s): Gerold Keefer; Hanna Lubecka

Version: 1.1

Last change: 09.08.02 11:24

Project phase: Implementation

Document file name: MutualProgramming.doc

Approval Authority: Gerold Keefer

Distribution: Public

Security Classification: -

Number of pages: 18

Mutual Programming AVOCA GmbH
A Practice to Improve Software Development Productivity

 2002 AVOCA GmbH Page 2 of 18

1 INTRODUCTION .. 4
1.1 PSP/TSP ... 4
1.2 XP/PP .. 5
1.3 COMPARISON OF PSP/TSP AND XP/PP... 6

2 MUTUAL PROGRAMMING (MP) .. 7
2.1 PURPOSE .. 7
2.2 SCOPE .. 7
2.3 CONSTRAINTS ... 7

3 MP REQUIREMENTS .. 7

4 PRINCIPLES .. 8
4.1 LEVELLED APPROACH WITH STEPWISE INTRODUCTION ... 8
4.2 OPEN FOR MEASUREMENT AND COMPARISON .. 8
4.3 APPLICABLE IN CLOSE TO ALL DEVELOPMENT ENVIRONMENTS .. 8
4.4 FLEXIBLE AND ADAPTABLE ... 8

5 ROLES ... 9
5.1 DEVELOPER .. 9
5.2 QA (QUALITY ASSURER).. 9
5.3 MODERATOR ...9
5.4 COACH.. 9

6 IMPLEMENTATION ... 9
6.1 GREEN BELT ...9

Team Setting .. 9
Required Elements ... 9
Recommended Elements ... 9

6.2 BLUE BELT .. 10
Team Setting .. 10
Required Elements ... 10
Recommended Elements ... 10

6.3 RED BELT ... 11
Team Setting .. 11
Required Elements ... 11
Recommended Elements ... 11

6.4 BLACK BELT .. 12
Team Setting .. 12
Required Elements ... 12
Recommended Elements ... 12

7 ELEMENT EXPLANATIONS ... 13
7.1 DLDA ... 13
7.2 THREE QUESTIONS .. 14

1. Is this defect somewhere else also?.. 15
2. What follow-on defect might be caused by a fix of this defect?... 15
3. What should I do to prevent defects like this? ... 15

7.3 AUTOMATED UNIT TESTING .. 15
7.4 INSPECTIONS... 15
7.5 WORK PRODUCT PREVIEWS... 15
7.6 COVERAGE MEASUREMENT.. 15
7.7 EFFORT TRACKING .. 16
7.8 FORMAL EFFORT ESTIMATION .. 16
7.9 PROGRAM TRACE FILES... 16
7.10 FORMAL WORK PRODUCT RISK AND OPPORTUNITY ASSESSMENT.. 16

Mutual Programming AVOCA GmbH
A Practice to Improve Software Development Productivity

 2002 AVOCA GmbH Page 3 of 18

7.11 ROOT CAUSE ANALYSIS ... 16
7.12 DEFECT DENSITY TRACKING... 16

8 TOOLS ... 16
8.1 DLDA ... 16
8.2 EFFORT TRACKING .. 17
8.3 AUTOMATED UNIT TESTING .. 17

9 CONCLUSIONS ... 17

10 REFERENCES.. 17

11 TOOLS.. 18

12 CONTACT DATA.. 18

Notes:

1. Picture on title page courtesy Robert Peters from the movie “Mutual Love Life”, 1999.
2. Capability Maturity Model and CMM are registered in the U.S. Patent and Trademark Office.
3. CMMI, CMM Integration, PSP, and TSP are service marks of Carnegie Mellon University.

Mutual Programming AVOCA GmbH
A Practice to Improve Software Development Productivity

 2002 AVOCA GmbH Page 4 of 18

1 Introduction
There have been several proposals for processes and practices at the personal and at the team level
that aim to increase predictability, productivity, and quality of software engineering tasks. The most
prominent are

• The Personal Software Process and the related Team Software Process (PSP/TSP), and
• Extreme Programming and its practice Pair Programming (XP/PP).

We will briefly introduce both approaches in the following sections.

1.1 PSP/TSP
If you have no basic idea about the PSP and TSP processes, please have a look at [5, 6].
There is sufficiently strong empirical evidence based on industry data for significant increases in both
schedule reliability and software quality as a result of the application of PSP/TSP [1]. This can be seen
from Figure 1.

Figure 1: Increased schedule reliability and software quality through PSP/TSP use (from [1]).

Mutual Programming AVOCA GmbH
A Practice to Improve Software Development Productivity

 2002 AVOCA GmbH Page 5 of 18

In general the observed variability of work products created with PSP/TSP is reported to be lower than
without PSP/TSP. In controlled experiments with students, however, no increases or even decreases
in quality were observed [12].
A very important fact concerning the PSP/TSP is that close to all reports indicate problems with the
adoption of the practices. In fact the TSP was developed for the reason that the PSP was not viable in
the field. In [16] Humphrey and Webb state:

“Although the training was generally well received, use of the PSP in TIS started to decline as soon as
the classes were completed. Soon, none of the engineers who had been instructed in PSP techniques
was using them on the job.”

The introduction of the TSP may have positively influenced the adoption of the PSP, however, despite
those benefits neither PSP nor TSP are a widespread industry practice. The major obstacles are most
likely

• considerable necessary effort to learn the PSP/TSP and
• high probability that the PSP/TSP will not be used after a training, because it is considered to

be too restrictive and cumbersome.

1.2 XP/PP
Extreme Programming is currently probably the most controversial software development
methodology topic. We have expressed considerable concerns about the usefulness of this method in
[7]. Despite those concerns there is no denying that XP/PP receives continuing high focus and various
organizations implemented at least parts of the approach.

A central element of Extreme Programming is the practice of pair programming. Laurie Williams, who
conducted an empirical study on pair programming, describe the practice as follows:

“Two programmers working side-by-side, collaborating on the same design, algorithm, code or test.
One programmer, the driver, has control of the keyboard/mouse and actively implements the program.
The other programmer, the observer, continuously observes the work of the driver to identify tactical
(syntactic, spelling, etc.) defects and also thinks strategically about the direction of the work. On
demand, the two programmers can brainstorm any challenging problem. Because the two
programmers periodically switch roles, they work together as equals to develop software.”

Although there are numerous claims about productivity and quality improvements with pair
programming, the empirical evidence we have so far does not consistently support such claims:
In fact, all of the empirical studies suggest that the total development time increases and
improvements in quality are not consistently reported [10].
In Figure 2 you will find results of the most recent study on pair programming that also included the
PSP in the experiment [10]. The results indicate that the consumed person hours nearly double with
pair programming and that program quality measured by number of re-submissions is only marginal
better with pair programming.

Mutual Programming AVOCA GmbH
A Practice to Improve Software Development Productivity

 2002 AVOCA GmbH Page 6 of 18

Figure 2: Results of the Nawrocki study on pair programming (XP2), solo programming/test-
centred (XP1), and PSP (PSP) from [10].
Another interesting result of this study is that the PSP and PP are both lacking behind a solo
programming technique called XP1 that the authors describe as “Experimentation and test-centred
quality assurance, simple solution, and risk minimization”.

The ease of adoption of XP/PP is very much dependent on the prevailing development culture in the
respective organization. Extreme Programming has drawn a lot of interest in very short time. However,
one of the most controversial practices is the practice of pair programming. It also follows from
common sense that not everybody will easily transition to a situation that requires working several
hours a day at the same machine together with a co-worker.

1.3 Comparison of PSP/TSP and XP/PP
PSP/TSP:

Mutual Programming AVOCA GmbH
A Practice to Improve Software Development Productivity

 2002 AVOCA GmbH Page 7 of 18

Pros Cons

Quality Increase Adoption problems
Productivity Increase Overhead
Reliability Increase
Quantitative/Measurable
Peer pressure
Formal Inspections
Knowledge Transfer
Partly Suitable for distributed development

XP/PP:

Pros Cons
Knowledge Transfer Productivity Decrease
Defect Prevention Not suitable for distributed development.
Peer Pressure Faster exhaustion.
No overhead No formal inspections.

2 Mutual Programming (MP)

2.1 Purpose
MP is a software development practice targeted at the individual and small team level that aims to
increases productivity, quality, and reliability of software engineering work. It is designed to be used
primarily during the implementation phase of software development projects where the majority of
effort is spent and most defects are injected.

2.2 Scope
MP does not say anything about organizational or project management issues beyond the level of
individuals, pairs, and supporting staff like coaches and moderators. MP is not a software
development process that an organization can solely rely on and it does not describe contents of work
products and specific tasks, beyond what is necessary to implement the practice. No element of MP is
entirely new. MP is a set of existing best practices put together in a transparent, measurable, and
appealing way.

2.3 Constraints
MP may not be suitable for environments with highly fragmented tasks (e.g. many small tasks shorter
than half a day), such as system administration environments or product support. So far the benefits of
MP are entirely hypothetical and not supported by empirical findings. However, close to all of the
elements of MP, such as DLDA or automated unit testing, have been shown to be beneficial when
applied in isolation.

3 MP Requirements
1. MP shall be easy to adopt and sustain.
2. MP shall allow for the easy measurement of performance with regard to quality, productivity,

and estimation reliability.
3. MP shall include defect prevention measures.
4. MP shall increase quality, productivity, and estimation reliability.
5. MP shall be suitable for distributed development settings.
6. MP shall be suitable for development of work products other than code.
7. MP shall be suitable for organizations of any size.

Mutual Programming AVOCA GmbH
A Practice to Improve Software Development Productivity

 2002 AVOCA GmbH Page 8 of 18

4 Principles

4.1 Levelled approach with stepwise introduction
The experience of the PSP/TSP is that rigorous and formal practices are not easily adopted. MP
facilitates adoption with a levelled approach that carries developers from an initial “green belt”-level
through “blue belt” and “red belt” to the “black belt”-level.

Black Belt (2 Developers, Coach)
Mandatory Coaching

Effort Tracking
3 Point Estimation Method

Formal Work Product Risk and Opportunity Assessment
Inspections

Automated Unit Testing
DLDA

Red Belt (2 Developers. Moderator)
Effort Tracking

3 Point Estimation Method
Work Product Previews

Fagan Inspections
Automated Unit Testing with Test Coverage

Measurement
DLDA

Blue Belt (2 Developers)
Work Product Previews

Automated Unit Testing/Inspections
DLDA

Green Belt (1 Developer)
 DLDA

We reckon that it should be possible to advance from one stage to the next within 2-5 months.

4.2 Open for measurement and comparison
Clear entry and exit criteria as well as mandatory measurements support the quantitative evaluation of
the practice.

4.3 Applicable in close to all development environments
MP can be done in a range of settings, including remote settings.

4.4 Flexible and Adaptable
With MP collaborative work is in no way prohibited. The important point is that the ultimate
responsibilities (development vs. QA) are clearly separated.

For explicit prototyping to investigate issues discovered during previews or assessments it is allowed
to bypass elements of MP, however, any official work product of a project has to be created according
to the required practices.

Mutual Programming AVOCA GmbH
A Practice to Improve Software Development Productivity

 2002 AVOCA GmbH Page 9 of 18

5 Roles

5.1 Developer
The person that executes the implementation of the respective work product and is responsible for
how this implementation is conducted. The developer is allowed to support the QA, however, the
responsibility is separated.

5.2 QA (Quality Assurer)
The person that previews, inspects, and tests the work product. The QA is allowed to support the
Developer, however, the responsibility is separated.

5.3 Moderator
The person that moderates the inspection meetings. The role is precisely described in Fagan’s paper
[3]. In remote settings the inspection meetings are substituted by inspection conference calls.

5.4 Coach
The person that is experienced with MP and has practiced it at the black belt level. The coach leads
the formal work product assessments and is the approval authority for release.

6 Implementation

6.1 Green Belt

 Team Setting
• 1 developer, doing both development and QA for assigned work products.

Required Elements
• Defect logging and defect data analysis (DLDA) of personal defects in accordance with the

standard to be found at http://www.ipd.uka.de/PSP/Dokumente/DefTyp/DefTyp.html and [13].
• Ask the three questions to be found at http://www.multicians.org/thvv/threeq.html .

Recommended Elements
• Statistical analysis of defect log every three months.

http://www.ipd.uka.de/PSP/Dokumente/DefTyp/DefTyp.html
http://www.multicians.org/thvv/threeq.html

Mutual Programming AVOCA GmbH
A Practice to Improve Software Development Productivity

 2002 AVOCA GmbH Page 10 of 18

Input Output

Defect Log

Develop
ment

Mutual Programming Green Belt

6.2 Blue Belt

Team Setting
• 2 developers, one doing actual development and the other doing QA and vice versa.
• Optional Moderator for inspections.

Required Elements
• All required and recommended elements at the white belt level.
• Work product previews: Before a work product is created a formal meeting is held, similar to

what is described as “Overview” in [3]. The exit criterion of that meeting is a document stating
the purpose, scope, and constraints of the work product and any concerns identified.

• Explicit QA of the work product: In the case of an executable work product this is an
automated unit test suite implemented by the QA responsible. In the case of a design
document this is a formal inspection conducted by the QA responsible.

• The test cases of the unit test suite have to be specified before the implementation of the
executable work product begins.

• The work product is released to the project as soon as either all specified test cases are
passed or all issues found during the inspection are resolved. Release must be approved by
the QA responsible.

Recommended Elements
• Test coverage target and test coverage measurement.
• Effort/time tracking, for example generated document pages or LOCs.

Mutual Programming AVOCA GmbH
A Practice to Improve Software Development Productivity

 2002 AVOCA GmbH Page 11 of 18

Input Output

Defect Log

Develop
ment

Automated
Ut. Testing

Inspec
tions

Previews

Mutual Programming Blue Belt

6.3 Red Belt

Team Setting
• 2 developers, one doing actual development and the other doing QA.
• Moderator for inspections.

Required Elements
• All required and recommended elements at the blue belt level.
• The two developers know about the defect profiles and the defect logs of each other and

mutually ask the three questions to be found at http://www.multicians.org/thvv/threeq.html .
• Fagan inspections for all work products.
• Application of formal effort estimation such as the 3-point effort estimation method

independently done by both developers [4].

Recommended Elements
• Program trace files, if applicable.
• Tracking of defect density.

http://www.multicians.org/thvv/threeq.html

Mutual Programming AVOCA GmbH
A Practice to Improve Software Development Productivity

 2002 AVOCA GmbH Page 12 of 18

Input Output

Defect Log

Develop
ment

Automated
Ut. Testing

Inspec
tions

Previews

Estima
tions

Test
Coverage LogEffort Log

Mutual Programming Red Belt

6.4 Black Belt

Team Setting
• 2 developers, one doing actual development and the other doing QA.
• MP coach.

Required Elements
• All required and recommended elements at the red belt level.
• Developers should have a complementary skill profile.
• Formal work product risk and opportunity assessment conducted by the MP coach prior to

every major work product (more than 10 days effort) task as an enhancement of the work
product preview.

• Root cause analysis of each detected defects by the MP coach.
• The QA responsible and the MP coach must approve release.

Recommended Elements
• Statistical analysis of process metrics by the MP coach.
• ATA blocks as described in [9] in program code.

Mutual Programming AVOCA GmbH
A Practice to Improve Software Development Productivity

 2002 AVOCA GmbH Page 13 of 18

Input Output

Defect Log

Develop
ment

Automated
Ut. Testing

Inspec
tions

Previews

Estima
tions

Test
Coverage LogEffort Log

Assess
ment

Root
Cause

Mutual Programming Black Belt

7 Element Explanations

7.1 DLDA
Defect logging and defect analysis (DLDA) is a technique that the individual developer employs during
daily work. A set of mnemonics is used to precisely document what has happened and when with
identified defects during inspections, testing, debugging, and integration or other software related
work.
Each defect is assigned an identification number and defect the defect lifetime stages are recorded in
a DLDA logfile with consecutive log statements.

The following status mnemonics exist:

• bd: “begin defect”.
• bs: “begin search”.
• ss: “search successful”.
• su: “search unsuccessful”.
• bf: “begin fixing”.
• ef: “end fixing”.
• bv: “begin fix verification”.
• ed: “end of defect”.

Mutual Programming AVOCA GmbH
A Practice to Improve Software Development Productivity

 2002 AVOCA GmbH Page 14 of 18

Current state Event Next state Action
1 Undefined Possible defect

encountered.
bd Generate ID and write log

entry with timestamp.
2 bd Begin search after some

time.
bs Write log entry with

timestamp.
3 bd Begin search

immediately, problem
obvious, fixed, and
verified immediately.

ed Write log entry with
timestamp, defect type,
defect phase, and defect
reason.

4 bd Begin search
immediately, problem
obvious, fixed, and
verified immediately, but
not successful

bd Write log entry with
timestamp.

5 bd Begin search
immediately, problem
obvious, and fixed, but
not verified.

ef Write log entry with
timestamp.

6 bd Begin search
immediately and search
is successful (even if
there is no defect).

ss Write log entry with
timestamp.

7 bd Begin search
immediately and search
is not successful.

bd Write log entry with
timestamp.

8 bs Search successful. ss Write log entry with
timestamp.

9 bs Search successful, fix
defect immediately, and
verified.

ed Write log entry with
timestamp.

10 bs Search successful and
fix defect immediately,
but not verified.

ef Write log entry with
timestamp.

11 bs Search not successful. bd Write log entry with
timestamp.

12 ss Begin fixing defect after
some time.

bf Write log entry with
timestamp.

13 bf Fixing finished. ef Write log entry with
timestamp.

14 ef Begin fix verification. bv Write log entry with
timestamp.

15 bv Verification successful. ed Write log entry with
timestamp, defect type,
defect phase, and defect
reason.

16 bv Verification not
successful.

bd Write log entry with
timestamp.

Initially only the bd and ed entries might be used in order to increase developer acceptance. Later on
the stage “search”, “fix”, and “verification” should also be separately logged.

7.2 Three Questions
This is a technique suggested by Tom Van Vleck [15]. For each detected defect the developer has to
give answers to the following three questions:

Mutual Programming AVOCA GmbH
A Practice to Improve Software Development Productivity

 2002 AVOCA GmbH Page 15 of 18

1. Is this defect somewhere else also?

2. What follow-on defect might be caused by a fix of this defect?

3. What should I do to prevent defects like this?

At the blue, red, and black belt level the developer will be asked those questions by the QA, who in
addition can give further advice.

7.3 Automated Unit Testing
Unit testing is the classical arena of white box testing techniques. Following the nomenclature of Boris
Beizer, data flow testing, control flow testing, finite state machine testing, loop testing, or domain
testing are all techniques that can be applied for unit testing. For the purpose of automation xUnit
testing tools are recommended that are available for close to all c programming languages currently in
widespread use.

7.4 Inspections
Most of what has to be said about inspections can be found in Michael Fagan’s paper [3]. In situations
where no moderator is available, a modified variant of inspections is possible, whereby the QA
reviews the work product and the findings are discussed in a meeting together with the developer.
However, this practice is only allowed at the blue belt level and with participants that have substantial
experience with inspections. At the red and black belt level a trained moderator is required.

7.5 Work Product Previews
A work product preview is a formal meeting with the intention to align the stakeholders about the
purpose, scope, and constraints of the work product to be built. The specification of

• use,
• change, and
• test cases

is a major goal of this meeting.

The following participants roles are recommended and you can certainly assign more than one role to
a person:

• Domain expert.
• Architect.
• Developer.
• Tester/QA.
• Product manager.
• User.
• Integrator.
• Program manager.

7.6 Coverage Measurement
There are basically three coverage metrics in use:

1. C0 (all statements),
2. C1 (all statements and conditions), and
3. C3 (all paths).

Mutual Programming AVOCA GmbH
A Practice to Improve Software Development Productivity

 2002 AVOCA GmbH Page 16 of 18

To achieve the red belt level, it is required that the C0 statement coverage criteria is reached and
measured with a code coverage tool. Alternatively a well thought out program tracing or a debugger
can be helpful in the absence of such a tool.

7.7 Effort Tracking
This practice requires the developer and the QA to track the effort they spent on certain tasks, such as

• requirements,
• specification,
• design,
• coding,
• test,
• reviews.

In addition the tracking of tasks that are not directy related to development, like communications,
meetings, trainings, etc. could also be useful for the reason that in some environments the time spent
on actual development tasks is as low as 18 hours per week.

7.8 Formal Effort Estimation
As an alternative to simple guessing, formal effort estimation is required starting from the red belt
level. This involves the developer and the QA, who both have to provide three estimates:

• best case.
• most likely case.
• worst case.

Those estimates are then put together for an overall estimate that should be compared to actual effort
later on. More information can be found in the article [4].

7.9 Program Trace Files
Program trace files should track all the function or method call sequences. In addition, they should
cover at least the values of important variables at checkpoints. If more information is needed, the
information content of program traces should be adjustable. Program trace files are very helpful for
debugging purposes and for desk-checking of program behaviour.

7.10 Formal Work Product Risk and Opportunity Assessment
A work product risk and opportunity assessment is basically a risk management process such as the
one described in [8] tailored and applied to major work products.

7.11 Root Cause Analysis
The practice of root cause analysis has been described in several articles, for example in [2].

7.12 Defect Density Tracking
Defect density is the number of defects found per work unit. Work unit could be for example KLOC or
a certain number of written pages. To calculate the defect density, defect log entries have to be
related to work products and the work product size has to be measured.

8 Tools

8.1 DLDA
We set up a tool that let developer enter their defect information with an HTML-form.

Mutual Programming AVOCA GmbH
A Practice to Improve Software Development Productivity

 2002 AVOCA GmbH Page 17 of 18

8.2 Effort Tracking
There are several free effort tracking tools around. See for example http://www.allnetic.com .

8.3 Automated Unit Testing
Please have a look at the various programming languages with xUnit support at the www.junit.org web
site. There is also a cUnit test framework set up by Chuck Allison available for ANSI C.

9 Conclusions
We described a levelled approach to introduce a disciplined method for the development of software
and software related work products. Close to all of the described practices have been around for quite
some time and we don’t claim that those practices are new. However, we are convinced that a major
hurdle for software development productivity increase is not the absence of practices, but the lack of
their application to daily work. The method therefore balances between simplicity and formal rigour in
a way that makes adoption easy, but does not compromise on necessary formal aspects, such as
explicit, measurable quality assurance, and clear entry and exit criteria.

We think that the mutual programming approach will make the introduction of formal rigour easier,
because at each level the feasibility of more formalism can be actually measured. The black belt level
should sufficiently cover major CMM/CMMI level 5 aspects for implementation tasks.

10 References
1. D. R. McAndrews, 2001/2000, The Team Software Process (TSP): An Overview and Preliminary

Results of Using Disciplined Practices, SEI Technical Report CMU/SEI-2000-TR-015.

2. D. N. Card, Learning from Our Mistakes with Defect Causal Analysis, IEEE Software, Vol. 15, No.
1 (January/February 1998), pp. 56-63.

3. M.E. Fagan, Design and code inspections to reduce errors in program development, IBM
Systems Journal 15(1976) pp 182-211.

4. P. Gartner, Die Drei-Punkt-Schätzmethode zur Kalkulation des Projektaufwands,
Projektmanagement 4/99.

5. W. Humphrey, A Discipline for Software Engineering, Addison-Wesley, 1995.

6. W.S. Humphrey, The Team Software Process (TSP), SEI Technical Report CMU/SEI-2000-TR-
023, 2000.

7. G. Keefer, Extreme Programming Considered Harmful for Reliable Software development,
AVOCA Technical Report, 2002.

8. G. Keefer, A CMMI Compatible Risk Management Process, PSQT South 2002 Presentation.

9. K. Miller, A modest proposal for software testing, IEEE Software, Vol. 18, No. 2 (March/April
2001), pp. 96-98.

10. J. Nawrocki, A. Wojciechowski, Experimental Evaluation of Pair Programming, ESCOM 2001
Paper.

11. L. Prechelt et al., 1997, Experience Report:Teaching and Using the Personal Software Process
(PSP), University of Karlsruhe, Submission to the ESEC.

http://www.allnetic.com/
http://www.junit.org/

Mutual Programming AVOCA GmbH
A Practice to Improve Software Development Productivity

 2002 AVOCA GmbH Page 18 of 18

12. L. Prechelt et al., 1999, A Controlled Experiment on the Effects of PSP Training: Detailed
Description and Evaluation, University of Karlsruhe Technical Report 1/1999

13. L. Prechelt, Accelerating Learning: from Experience: Avoiding Defects Faster, IEEE Software, pp.
56 - 61, November/December 2001.

14. R. Smith, J. Hale and A. Parrish, An Empirical Study Using Task Assignment Patterns to Improve
the Accuracy of Software Effort Estimation, IEEE Transactions on Software Engineering, Vol. 27,
No. 3, March 2001.

15. Van Vleck, Tom, Three Questions About Each Bug You Find, Tom Van Vleck Web site.

16. Webb, D. and Humphrey, W., 1999, Using the TSP on the TaskView Project, Crosstalk 12, 2
February 1999.

11 Tools

12 Contact Data
Gerold Keefer / Hanna Lubecka AVOCA GmbH
Kronenstr. 19,
D-70173 Stuttgart
Germany
Phone: +49 711 22 71 374
Fax: +49 711 22 71 375
E-mail: info@avoca-vsm.com
http://www.avoca-vsm.com

mailto:info@avoca-vsm.com
http://www.avoca-vsm.com/

	Introduction
	PSP/TSP
	XP/PP
	Comparison of PSP/TSP and XP/PP

	Mutual Programming (MP)
	Purpose
	Scope
	Constraints

	MP Requirements
	Principles
	Levelled approach with stepwise introduction
	Open for measurement and comparison
	Applicable in close to all development environments
	Flexible and Adaptable

	Roles
	Developer
	QA (Quality Assurer)
	Moderator
	Coach

	Implementation
	Green Belt
	Team Setting
	Required Elements
	Recommended Elements

	Blue Belt
	Team Setting
	Required Elements
	Recommended Elements

	Red Belt
	Team Setting
	Required Elements
	Recommended Elements

	Black Belt
	Team Setting
	Required Elements
	Recommended Elements

	Element Explanations
	DLDA
	Three Questions
	Is this defect somewhere else also?
	What follow-on defect might be caused by a fix of this defect?
	What should I do to prevent defects like this?

	Automated Unit Testing
	Inspections
	Work Product Previews
	Coverage Measurement
	Effort Tracking
	Formal Effort Estimation
	Program Trace Files
	Formal Work Product Risk and Opportunity Assessment
	Root Cause Analysis
	Defect Density Tracking

	Tools
	DLDA
	Effort Tracking
	Automated Unit Testing

	Conclusions
	References
	Tools
	Contact Data

