
!!overridecount0
Performance Evaluation & Measurement of E-Business/ERP Systems

Rakesh Radhakrishnan
I T Architect

Sun Microsystems, Inc.

Packaged applications are being widely adopted at mid- and large-size companies to
automate both internal and business-to-business processes. E-Business/ERP
implementations are usually part of a broader enterprise computing effort involving
the integration of Web, server and host-based applications. In many cases, E-
Business/ERP systems constitute the engine upon which new business processes are
deployed. These business transactions are essential elements in the drive to deploy
new products and services an support new customer relationship management
efforts.With so much resting on these systems, it's imperative that they operate at peak
performance. IT departments need to adopt measurements for tracking the
performance of their E-Business/ERP applications both during implementation and
production phases of operation. Companies that deploy these complex, multi-
application business applications must continually adjust them to meet performance
and capacity demands as the system scales. The rate with which these applications are
deployed by organizations, the pace at which data grows and the size of the user
population contribute to the type of system and network infrastructure required. These
factors also influence the application architecture adopted to support large-scale E-
Business/ERP deployments.

When developing an E-Business/ERP deployment plan, factors such as the operating
systems, databases, Web servers, and middleware used must be taken into account.
Any type of performance evaluation should include extensive stress, system
integration, unit and parallel tests to examine every facet of the system and how it
performs in relation to the underlying infrastructure.

Testing should be addressed at every stage of the E-Business/ERP project from pilot
deployment to full blow roll-out. Tests should also be performed after lifecycle
changes and software upgrades are made to the system.

There are 9 basic steps used to evaluate and measure the performance of an E-
Business/ERP system:

1. Definition of performance requirements such as minimal acceptable response
time for all end-to-end tasks and acceptable network latency of an interface

2. Creation of a test bed with all components in place

3. Configuration of entire infrastructure based on vendor recommendations

4. Execution of unit tests for each application in the package to ensure all
required functions work

5. Execution of integration test to ensure compatibility and connectivity

between all components

6. Launch monitoring tools for underlying systems including operating systems,
databases and middleware

7.Creation of baseline reference of the response times for all key tasks when the
system is not under stress

8.Creation of baseline reference of response times for all key tasks under varying load
conditions

9.If requirements are not met, make necessary changes in the hardware, software and
networks and repeat the tests

Without successfully completing tests aimed at the functionality offered with each
software module in the E-Business/ERP suite in isolation (unit) and in conjunction
with each other (integration), a full blown stress test can't be orchestrated. All
individual components should be working in isolation and in relation to one another
for a successful stress test to be accomplished, since both the functionality and the
integration between these components are exercised heavily during a stress test.

When embarking on a detailed test plan, it's important to look at the system
architecture and how it influences the E-Business/ERP/ERP deployment and system
performance. The following is a list of the architectural components associated with a
large-scale web-enabled E-Business/ERP/ERP implementation:

�Back-end network infrastructure such as fiber-based storage area network, clustered
storage area network or high speed backbone

�Scaleable servers such as symmetrical multiprocessing and NUMA systems

�Back-end software components such as databases and middleware

�Back-end connection

�Client hardware

�Client software

�Client-side ISP connection

 A typical connection flows from the client machine running the OS and browser to
the back-end via the virtual private network provided by the ISP, Web server connecting
to the application server, and finally connecting to the database server. Performance
issues and bottlenecks can stem from any of these connections, or from a component and
the interface with which the component interacts.

The enormity and complexity of E-Business/ERP/ERP implementation environments
can give rise to a variety of bottlenecks stemming from network connections, database
locks, memory usage, router latency, and firewall problems. A subset of such
problems could include:

�Too many software modules installed and cached

�Outdated and insufficient hardware Outdated and incompatible software Slow
modem access

�Lack of virtual memory or disk space

�Router latency resulting from too many hops

�Clogged and insufficient network infrastructure

�Improper operating system configuration

�Insufficient database locks

�Inefficient use of application partitioning

�Inefficient use of logical memory manager

�Improper RAID configuration

�Slow storage sub-systems

�Components that are not multi-threaded and ones that do not scale across multiple
CPU's

�Efficient use of addressable memory space

�Lack of efficient distribution of data between disks or storage sub-systems

�Poor SQL syntax

�No load balancing

�Component interaction latencies Interface latencies

�

It's possible to add several thousand factors like the ones above that contribute to poor
performance. However, to identify the critical ones that contribute significantly to slow
performance, a detailed analysis of the 9 steps associated with performance
measurements is the best place to start.

Step 1

Define performance requirements

Instead of defining performance requirements in terms of the number of transactions
per minute, which is relevant when measuring database performance in isolation, or
network latency, which is relevant for a network resource planning study, performance
requirements should define the end-to-end requirements that are the most relevant to
system users. For example, the response time of a human resources or financial system
should look at the response time from start-to-finish, and evaluate tasks such as:

Selecting a product and placing it in the shopping cart

Ordering a list of products selected

posting a job opening

submitting a leave application ordering goods

adding a new supplier

submitting a requisition

adding an asset

submitting a purchase order

Users of the system are only concerned about the time it takes for them to accomplish
specific tasks using the E-Business/ERP system. They're not concerned about the
internals of the system and how many millionoperations per second a server can
handle.

By measuring the performance of tasks that exercise all components of the system, an
administrator can baseline the application's performance, identify bottlenecks, make
changes and baseline the effects once again.

When defining performance requirements it's important to consider the user input and
manage expectations. Critical tasks should be identified. If response time for
generating a specific report that actually analyzes several gigabits of data is
unrealistically set below one second by the user, expectations have to be managed.

It's also important to define other performance parameters along with requirements
such as a typical work load or peak workload. A peak workload could include 1,000
WAN users and 200 local users, including 20 power users accessing the financial
module. The peak period could include 20 batch processes, 10 application domains, 30
queries, and 30 print jobs running on the system. Measuring the response time of each
identified task and sub-task with no workload, typical workload and peak load
iscritical to measuring and predicting application performance.

Step 2

Set up a test bed with all the components in place

It's extremely important to establish a test bed that includes all components and is
configured as closeto the production environment as possible. All E-Business/ERP
application vendors provide certification information about the platforms supported.
The back-end hardware used in a test bed should be based on the hardware
recommendations for a production environment. If a giga-bit switch is used on the
back-end to speed up data transfers between the application server, database and the
interfaced system in the production environment, a similar one should be set up as part
of the test bed.

To simulate wide area network and Internet traffic, client machines need to be
configured outside the router that connects the back-end network to the WAN or the
Internet. If access to the application is expected from client machines with 64MB of
memory, 300MHz Intel processor and a 56KB modem, this combination of hardware for
the client side should be setup as part of the test bed.

Also as part of the test bed setup, sample data, test monitoring tools and test
automation tools all need to be in place prior to exercising any efforts with regards to
configuration and tuning. These include protocol analyzer, a test automation tool,

operating system and monitoring tool.

Step 3

Configure and tune the entire infrastructure based on vendor recommendations and
certifications. Before beginning any testing, it's important to configure and tune the
entire infrastructure but only on given parameters and variables. Use the vendor's
recommendations as a baseline. It's impossible to get recommendations for all
parameters for a platform from specific vendors and even if it's possible, this could
introduce unnecessary complexities given the thousands of variables that can be tuned
at each layer.

Certain key recommendations could include: total memory configuration for the
database, total allowable locks, network packet size, number of I/O demons, number
of application domains, buffered I/O size, customized cache configurations,
recommended OS patches, recommended client connectivity tools version and patches
and network interface card throughput.

Any tests attempted without accomplishing this third step is basically a wasted effort.
Baselining the response time without the default product configurations could lead to
misleading test results. The configuration and tuning guidelines given by the
respective vendors can only act as a starting point. Further changes in specific
hardware and software configuration that can improve performance will be dependent
on any additional findings based on the remaining steps associated with this process.
Keep in mind that steps 3 through 8 are iterative processes that must be repeated until
the performance requirements are met.

Step 4

Conduct unit tests to ensure all required functions work. Based on the performance
requirements defined in step 1, all identified functions like adding an asset and generating
an accounts payable report ought to be tested first in isolation to ensure that these tasks
can be accomplished end-to-end using the system. This is a precursor to the remaining
tests that need to be accomplished. Unit tests are meant to ensure that the product works

the way it's supposed to. Although the unit tests are conducted in isolation from one
another, it's still expected that all the components that are part of the system are in place
and function appropriately, but are not running at that point in time. Automated testing
tools can be used to accomplish these tasks.

Step 5

Conduct an integration test to ensure compatibility and connectivity between all
components. This step is critical since it's the first occasion when the entire system is
put to the test. All functions, sub-functions and their interactions are tested
concurrently. To accomplish this task the computing environment and all its
components must be active. The main purpose of this the test is to ensure that all
components can talk to each other. Any compatibility and connectivity issues that
exist will be revealed. Before studying and baselining the performance behavior of
each of the components in the system, it's important to fix these compatibility and
connectivity issues.

An example of a problem could be a connectivity time out by an application server for

the 100001st user when the five application servers are configured to provide access to
20000 users each. Another example is bad configuration pointing to different versions
of connectivity libraries. By completing this step successfully, you ensure that the
system in its entirety works, even if it is not yet at the acceptable level of performance.

Step 6

Kickoff all monitoring. At this phase we kick off all monitoring tools that have been
put in place during step 2. Baseline and track the resource consumption of these
monitoring tools since they can act as a skew to the test measurements. An example of
the monitoring tools that can be used based on the sample platform identified in step 2
includes:

Symon for Solaris 2.6 to measure resource usage of the database, application server,
OLAP server memory consumption, CPU usage and I/O activity

Sybase Monitor Server for ASE 11.5.1 to measure database usage, lock contention and
cache hit ratio

Performance Monitor for Windows NT 4.0 to measure resource consumption on the
file server and secondary application server

LANanalysis tool to identify network bandwidth utilization

When starting these performance measurement tools get output both in the form of
real-time visualization to study instant changes to the degradation or boosts in
response time/performance and as a file for the purpose of analyzing the data.

Step 7

Baseline response time for all key tasks under no stress. Once all the monitoring tools
and the entire infrastructure is up and running, we get a baseline of the response time
of all identified critical tasks without simulating the typical or the peak workload. This
gives us an idea about how individual tasks perform and how quickly they respond
when the back-end is basically idle. The response time for each task is computed by
submitting them and measuring the start-time to end-time with a tool like a stopwatch
or time scripts. The numbers generated through this step can be used for comparative
analysis purposes.

Step 8

Baseline response time for all key tasks under different load conditions

Two key load conditions under which the response times are measured once again
include the typicalworkload and the peak load. Assume that a task like submitting a
requisition is expected to be completed in less than 40 seconds. When running these
tests several times, we come up with averages of 22 seconds under idle conditions, 32
seconds under typical work-load and 52 seconds under peak-load conditions. Now, we
know clearly that there would be conditions when the expected levels of performance
cannot be achieved with the given infrastructure and its configuration.

Testing Under Various Conditions Task #1 (Submit a Requisition)

Start-time End-time Total-time (Under an idle work load)

#1 10:00:00 10:00:21 21 seconds

#2 10:01:00 10:01:23 23 seconds

#3 10:02:00 10:02:22 22 seconds

#4 10:03:00 10:03:22 22 seconds

#5 10:04:00 10:04:22 22 seconds

The above table illustrates the statistics generated for one such task. A typical test for
a large-scale deployment of a web-enabled E-Business/ERP system will include
hundreds of such tasks and may even range in the thousands.

Proper analysis of the data generated by the different monitoring tools will reveal the
bottleneck or the cause for the slow response to submitting a requisition. By alleviating
such a bottleneck the response time can be improved slowly but steadily. By running
steps 3 to 8 repeatedly, bottlenecks associated with every task can be identified and fixed.
In cases where the performance requirements are met for specific tasks after running
through the process the first time, it's important to continue baselining after every change
to ensure no performance degradation associated with a specific task has taken place.

Step 9

If requirements are not met, make necessary changes in the form of tuning

Tweaking, tuning, and adding or removing the relevant resource after running this
process several times is an optimal way of meeting performance requirements for all
tasks. In one situation the bottleneck could be identified as a process such as a credit
reporting process. When looking at the process flow, it will become apparent this task
can't handle more than a limited number of concurrent requests. Given asituation like
this, the configuration of this process could be modified to spawn more of the same to
accommodate more requests.

In another situation the firewall and its authentication/authorization process could be
identified as a bottleneck. A load-balanced cluster of firewall servers could resolve
this issue. A particular server's CPU utilization could cause a bottleneck and
something as simple as adding CPU's could be the answer to the problem. Similarly, if
the bottleneck is caused by I/O contention on a specific device, implementing striped
mirrors for that device could be the answer.

By adopting this methodology, all relevant macro level and micro level issues and
bottlenecks can be identified. This enables the overall throughput of the system to be
optimized. An added benefit of this process is ensuring functionality requirements and
addressing compatibility requirements.

Finally, by embracing this process you can tell if the applications will work under
realistic workloads and prove if service level agreements will be met. These tests will
also help an IT department understand how the system will affect existing IT
infrastructure. These tests should help gauge capacity planning efforts during the
system's lifecycle as well.

Rakesh Radhakrishnan

Rakesh Radhakrishnan is an IT architect with Sun Microsystems,
Inc., in McLean, Virginia, specializing in e-commerce and enterprise
applications.

Rakesh holds an M.B.A. and M.S. (CS) and is an enterprise
computing certified systems engineer from Sun Microsystems and a
systems architect pro from PeopleSoft.

He can be reached at rakesh.radhakrishnan@east.sun.com.

	Paper
	Bio

