
 © 2001 Applied Dynamics International

System
Requirements

Integration
Testing

System
Testing

Unit
Testing

Software
Requirements

Software
Design

Implementation
Design Test

The Butterfly Model for Test Development

Stephen D. Morton
Applied Dynamics International

morton@adi.com
www.adi.com

There is a dichotomy between the development and testing of software. This schism is illustrated
by the plethora of development models employed for planning and estimating the development of
software as opposed to the scarcity of valid test development models. At first glance, the same
models which serve to underlay the software development process with forethought and diligence
appear to be adequate for the more complex task of planning, developing, and executing adequate
verification of the application.

Unfortunately, software development models were not intended to encapsulate the vagaries of
software verification and validation, the two main goals of software testing. Indeed, software
development models can be antithetical to the effective testing of software. It lies in the hands of
software testing professionals, therefore, to define an effective model for software test
development that complements and completes any given software development model.

One such test development model is the Butterfly Model, which I will explore in some detail in
this paper. It should be understood that the butterfly model is neither separate nor integrated with
the development model, but instead is a monitoring and modifying factor in the completion of the
development model. While this may seem arbitrary and self-contradictory, it is my hope that the
elaboration of the butterfly model presented herein will both explain and justify this statement.

In this paper I will present a modified view of the ubiquitous “V” software development model.
On top of this modified model I will superpose the butterfly model of test development. Finally, I
will reconcile the relationship between the models, clarifying the effects of each on the other and
identifying the information portals germane to both, together or separately.

The Standard V Software Development Model
Nearly everyone familiar with modern software development knows of the standard V
development model, depicted below.

In this standardized image of the V
development model, both the design and test
phases of development are represented as
linear processes that are gated according to
the specific products of specific activities.
On the design side, system requirements
beget software requirements, which then
beget a software design, which in turn begets
an implementation.

On the test side of development, the software
design begets unit tests. Similarly, software
requirements beget integration tests (with a

The Butterfly Model of Test Development June 5, 2001

© 2001 Applied Dynamics International Page 2 of 14

little help from the system requirements). Finally, system requirements beget system tests.
Acceptance testing, being the domain of the end user of the application, is deliberately omitted
from this view of the V model.

It should be understood that the V model is simply a more expressive rearrangement of the
waterfall model, with the waterfall’s time-line component mercifully eliminated and abstraction
of the system indicated by the vertical distance from the implementation. The V model is correct
as far as it goes, in that it expresses most of the lineage required for the artifacts of successful
software development. From an application development point of view, this depiction of the
model is sufficient to convey the source associations of the major development cycle artifacts,
including test artifacts.

Unfortunately, the application development viewpoint falls well short of the software test
development vantage required to create and maintain effective test artifacts.

Rigor of Model Enforcement
Before launching into a discussion of the shortfalls of the V software development model, a side
excursion to examine the appropriate level of rigor in enforcing the model is warranted. It needs
to be recognized from the start that not all applications will select to implement the V model in
the same manner. Generally, deciding on how rigidly the model must be followed is largely a
product of understanding the operational arena of the application.

For example, any certification requirements attached to the application will dictate the rigor of the
model’s implementation. Safety critical software in the commercial aerospace arena, for
example, undergo an in-depth certification review prior to being released for industry use.
Applications in this arena therefore tailor their implementation of the V model toward fulfillment
of the objectives listed for each segment of the process in RTCA/DO-178B, the Federal Aviation
Administration’s (FAA’s) selected guidelines for certification.

Similarly, medical devices containing software that affects safety must be developed using a
version of the model that fulfills the certification requirements imposed by the Food and Drug
Administration (FDA). As automotive embedded controller software continues to delve into
applications that directly affect occupant safety (such as actuator based steering), it can be
expected that some level of certification requirement will be instituted for that arena, as well.

Other arenas do not require anything approaching this level of rigor in their process. If the
application cannot directly cause injury or the loss of life, or trigger the financial demise of a
company, then it can most likely follow a streamlined version of the V model.

Web applications generally fall into this category, as do many e-commerce and home-computing
applications. In fact, more applications fall into the second category than the first. That doesn’t
exempt them from the need to follow the model, however. It simply modifies the parameters of
their implementation of the model.

Where the V Model Leaves Off
The main issue with the V development model is not its depiction of ancestral relationships
between test artifacts and their design artifact progenitors. Instead, there are three facets of the V
model’s that are incomplete and must be accounted for. Just as in software development, we
must define the problem before we can attempt to solve it.

First, the V model is inherently a linear expression of a nonlinear process. The very existence of
the spiral model of software development should be sufficient evidence of the nonlinearity of
software development, but this point deserves further examination.

The Butterfly Model of Test Development June 5, 2001

© 2001 Applied Dynamics International Page 3 of 14

Design Phase

Genesis

Terminus

Software design artifacts, just like the software program they serve, are created and maintained by
people. People make mistakes. The existence of software testers bears witness to this, as does
the amount of buggy software that still seems to permeate the marketplace, despite the best efforts
of software development and testing professionals. When mistakes are found in an artifact, the
error must be corrected. The act of correction, in a small way, is another iteration of the original
development of the artifact.

The second deficient aspect of the V model is its implication of unidirectional flow from design
artifacts into test artifacts. Any seasoned software developer understands that feedback within the
development cycle is an absolute necessity. The arrows depicting the derivation of tests from the
design artifacts should in reality be two headed, although the left-pointing arrowhead would be
significantly smaller than the right-pointing head.

While test artifacts are generally derived from their corresponding design artifacts, the fact that a
test artifact must be so derived needs to be factored in when creating the design artifact in the first
place. Functional requirements must be testable – they must be stated in such a manner as to be
conducive to analysis, measurement, or demonstration. Vague statement of the requirements is a
clear indicator of trouble down the road. Likewise, software designs need to be complete and
unambiguous. The implementation methodology called for in the software design must be clear
enough to drive the definition of appropriate test cases for the verification and validation of that
design.

If the implementation itself is to be part of the test ancestry, then it, too, must be concise and
complete, with adequate commentary on the techniques employed in its construction but without
ambiguity or self-contradiction.

It should be noted that this discussion of the second deficient aspect of the V model is predicated
on a rigorous enforcement of the model’s dictates, such as is required for most aerospace
applications. For less rigorous instances of the model, the absolutes listed above may not apply.
This issue will be discussed further later in this paper.

The third deficient aspect of the V software development model is its encapsulation of test artifact
ancestry solely within the domain of the design artifacts. As stated above, test artifacts are
generally derived from their corresponding design artifacts. There are a multitude of other
sources that must be touched upon to ensure success in generating a “complete” battery of tests
for the software being developed.

A Closer View
The first issue mentioned with regard to the V development model is its essential linearization of
a nonlinear process – software development. This problem is one of perception, really, or

perhaps perspective. The root cause can be
found in the fact that the V software
development model is a simplified
visualization tool that illustrates a complex and
interrelated process. A more detailed view of a
segment of the design leg (which segment is
immaterial) is shown below.

In this expanded view of the design leg of the
V, the micro-iterative feedback depicted by the
small black arrows within the overall gray
feed-forward thrust are visible. Each micro-
iteration represents the accumulation of further

The Butterfly Model of Test Development June 5, 2001

© 2001 Applied Dynamics International Page 4 of 14

data, application of a lesson learned, or even the bright idea someone dreamed up while singing in
the shower. The point to be made here is this: The general forward-leaning nature of the legs of
the V tends to disguise the frenzied iterations in thought, specification, and development required
to create a useful application.

There are critical points along the software development stream that must be accounted for in any
valid test development model. For example, any time there is a handoff of an artifact (or part of
an artifact), the transacted artifact must be analyzed with respect to its contents and any flow-
down effects caused by those contents [MARI99]. In the expanded view of the V development
model shown above, the left edge of the broad arrow represents the genesis of a change in the
artifact under development. This edge, where new or modified information is being introduced,
is the starting point for all new micro-iterations. The right edge of the broad arrow is the
terminus for each micro-iteration, where the new or modified information is fully incorporated in
the artifact.

It should be further understood that micro-iterations can be independent of each other. In fact,
most significant software development incorporates a maelstrom of independent micro-iterations
that ebb and flow both concurrently and continuously throughout the overall development cycle.

The spiral model of software development, which many consider to be superior to the V model, is
founded on an explicit understanding of the iterative nature of software creation. Unfortunately,
the spiral model tends to be expressed on a macro scale, hiding the developmental perturbations
needed for the production of useful design and test artifacts.

The Butterfly Model
Now that we have rediscovered the hidden micro-iterations in a successful process based on the V
model, we need to understand the source of these perturbations. Further, we need to understand
the fundamental interconnectedness of it all, to borrow an existential phrase.

Butterflies are composed of three pieces – two wings and a body. Each part represents a piece of
software testing, as described hereafter.

Test Analysis
The left wing of the butterfly represents test analysis – the investigation,
quantization, and/or re-expression of a facet of the software to be tested. Analysis
is both the byproduct and foundation of successful test design. In its earliest form,
analysis represents the thorough pre-examination of design and test artifacts to
ensure the existence of adequate testability, including checking for ambiguities,

inconsistencies, and omissions.

Test analysis must be distinguished from software design analysis. Software design analysis is
constituted by efforts to define the problem to be solved, break it down into manageable and
cohesive chunks, create software that fulfills the needs of each chunk, and finally integrate the
various software components into an overall program that solves the original problem. Test
analysis, on the other hand, is concerned with validating the outputs of each software
development stage or micro-iteration, as well as verifying compliance of those outputs to the
(separately validated) products of previous stages.

Test analysis mechanisms vary according to the design artifact being examined. For an aerospace
software requirement specification, the test engineer would do all of the following, as a
minimum:

The Butterfly Model of Test Development June 5, 2001

© 2001 Applied Dynamics International Page 5 of 14

• Verify that each requirement is tagged in a manner that allows correlation of the tests for that
requirement to the requirement itself. (Establish Test Traceability)

• Verify traceability of the software requirements to system requirements.
• Inspect for contradictory requirements.
• Inspect for ambiguous requirements.
• Inspect for missing requirements.
• Check to make sure that each requirement, as well as the specification as a whole, is

understandable.
• Identify one or more measurement, demonstration, or analysis method that may be used to

verify the requirement’s implementation (during formal testing).
• Create a test “sketch” that includes the tentative approach and indicates the test’s objectives.

Out of the items listed above, only the last two are specifically aimed at the act of creating test
cases. The other items are almost mechanical in nature, where the test design engineer is simply
checking the software engineer’s work. But all of the items are germane to test analysis, where
any error can manifest itself as a bug in the implemented application.

Test analysis also serves a valid and valuable purpose within the context of software
development. By digesting and restating the contents of a design artifact (whether it be
requirements or design), testing analysis offers a second look – from another viewpoint – at the
developer’s work. This is particularly true with regard to lower-level design artifacts like detailed
design and source code.

This kind of feedback has a counterpart in human conversation. To verify one’s understanding of
another person’s statements, it is useful to rephrase the statement in question using the phrase
“So, what you’re saying is…”. This powerful method of confirming comprehension and
eliminating miscommunication is just as important for software development – it helps to weed
out misconceptions on the part of both the developer and tester, and in the process identifies
potential problems in the software itself.

It should be clear from the above discussion that the tester’s analysis is both formal and informal.
Formal analysis becomes the basis for documentary artifacts of the test side of the V. Informal
analysis is used for immediate feedback to the designer in order to both verify that the artifact
captures the intent of the designer and give the tester a starting point for understanding the
software to be tested.

In the bulleted list shown above, the first two analyses are formal in nature (for an aerospace
application). The verification of system requirement tags is a necessary step in the creation of a
test traceability matrix. The software to system requirements traceability matrix similarly
depends on the second analysis.

The three inspection analyses listed are more informal, aimed at ensuring that the specification
being examined is of sufficient quality to drive the development of a quality implementation. The
difference is in how the analytical outputs are used, not in the level of effort or attention that go
into the analysis.

Test Design
Thus far, the tester has produced a lot of analytical output, some semi-formalized documentary
artifacts, and several tentative approaches to testing the software. At this point, the tester is ready
for the next step: test design.

The right wing of the butterfly represents the act of designing and implementing
the test cases needed to verify the design artifact as replicated in the

The Butterfly Model of Test Development June 5, 2001

© 2001 Applied Dynamics International Page 6 of 14

implementation. Like test analysis, it is a relatively large piece of work. Unlike test analysis,
however, the focus of test design is not to assimilate information created by others, but rather to
implement procedures, techniques, and data sets that achieve the test’s objective(s).

The outputs of the test analysis phase are the foundation for test design. Each requirement or
design construct has had at least one technique (a measurement, demonstration, or analysis)
identified during test analysis that will validate or verify that requirement. The tester must now
put on his or her development hat and implement the intended technique.

Software test design, as a discipline, is an exercise in the prevention, detection, and elimination of
bugs in software. Preventing bugs is the primary goal of software testing [BEIZ90]. Diligent and
competent test design prevents bugs from ever reaching the implementation stage. Test design,
with its attendant test analysis foundation, is therefore the premiere weapon in the arsenal of
developers and testers for limiting the cost associated with finding and fixing bugs.

Before moving further ahead, it is necessary to comment on the continued analytical work
performed during test design. As previously noted, tentative approaches are mapped out in the
test analysis phase. During the test design phase of test development, those tentatively selected
techniques and approaches must be evaluated more fully, until it is “proven” that the test’s
objectives are met by the selected technique. If all tentatively selected approaches fail to satisfy
the test’s objectives, then the tester must put his test analysis hat back on and start looking for
more alternatives.

Test Execution
In the butterfly model of software test development, test execution is a separate
piece of the overall approach. In fact, it is the smallest piece – the slender
insect’s body – but it also provides the muscle that makes the wings work. It is
important to note, however, that test execution (as defined for this model)
includes only the formal running of the designed tests. Informal test execution is

a normal part of test design, and in fact is also a normal part of software design and development.

Formal test execution marks the moment in the software development process where the
developer and the tester join forces. In a way, formal execution is the moment when the
developer gets to take credit for the tester’s work – by demonstrating that the software works as
advertised. The tester, on the other hand, should already have proactively identified bugs (in both
the software and the tests) and helped to eliminate them – well before the commencement of
formal test execution!

Formal test execution should (almost) never reveal bugs. I hope this plain statement raises some
eyebrows – although it is very much true. The only reasonable cause of unexpected failure in a
formal test execution is hardware failure. The software, along with the test itself, should have
been through the wringer enough to be bone-dry.

Note, however, that unexpected failure is singled out in the above paragraph. That implies that
some software tests will have expected failures, doesn’t it? Yes, it surely does!

The reasons behind expected failure vary, but allow me to relate a case in point:

In the commercial jet engine control business, systems engineers prepare a wide variety of tests
against the system (being the FADEC – or Full Authority Digital Engine Control) requirements.
One such commonly employed test is the “flight envelope” test. The flight envelope test
essentially begins with the simulated engine either off or at idle with the real controller (both
hardware and software) commanding the situation. Then the engine is spooled up and taken for a
simulated ride throughout its defined operational domain – varying altitude, speed, thrust,

The Butterfly Model of Test Development June 5, 2001

© 2001 Applied Dynamics International Page 7 of 14

temperature, etc. in accordance with real world recorded profiles. The expected results for this
test are produced by running a simulation (created and maintained independently from the
application software itself) with the same input data sets.

Minor failures in the formal execution of this test are fairly common. Some are hard failures –
repeatable on every single run of the test. Others are soft – only intermittently reaching out to
bite the tester. Each and every failure is investigated, naturally – and the vast majority of flight
envelope failures are caused by test stand problems. These can include issues like a voltage
source being one twentieth of a volt low, or slight timing mismatches caused by the less exact
timekeeping of the test stand workstation as compared to the FADEC itself.

Some flight envelope failures are attributed to the model used to provide expected results. In
such cases, hours and days of gut-wrenching analytical work go into identifying the miniscule
difference between the model and the actual software.

A handful of flight envelope test failures are caused by the test parameters themselves.
Tolerances may be set at unrealistically tight levels, for example. Or slight operating mode
mismatches between the air speed and engine fan speed may cause a fault to be intermittently
annunciated.

In very few cases have I seen the software being tested lay at the root of the failure. (I did
witness the bugs being fixed, by the way!)

The point is this – complex and complicated tests can fail due to a variety of reasons, from
hardware failure, through test stand problems, to application error. Intermittent failures may even
jump into the formal run, just to make life interesting.

But the test engineer understands the complexity of the test being run, and anticipates potential
issues that may cause failures. In fact, the test is expected to fail once in a while. If it doesn’t,
then it isn’t doing its job – which is to exercise the control software throughout its valid
operational envelope. As in all applications, the FADEC’s boundaries of valid operation are dark
corners in which bugs (or at least potential bugs) congregate.

It was mentioned during our initial discussion of the V development model that the model is
sufficient, from a software development point of view, to express the lineage of test artifacts.
This is because testing, again from the development viewpoint, is composed of only the body of
the butterfly – formal test execution. We testers, having learned the hard way, know better.

A Swarm of Testing
We have now examined how test analysis, test design, and test execution compose the body of the
butterflies in this test development model. In order to understand how the butterfly model
monitors and modifies the software development model, we need to digress slightly and
reexamine the V software development model itself.

In Figure 1, not only have the micro-iterations naturally present in the design cycle been included,
but the major design phase segments (characterized by their outputs) have been separated into
smaller arrows to clearly define the transition point from one segment to the next. The test side
of the V has been similarly separated, to demarcate the boundaries between successful formal
execution of each level of testing.

The Butterfly Model of Test Development June 5, 2001

© 2001 Applied Dynamics International Page 8 of 14

Figure 1. Complete Expanded V Development Model View

No micro-iterations on the test side of the V are shown in this depiction, although there are a few
to be found – mostly around the phase segment transitions, where test execution documentary
artifacts are formulated and preserved. The relative lack of micro-iterations on the test side of the
V is due to the fact that it represents only the formal running of tests – the leg work of analysis
and design are done elsewhere. The question, therefore, is: Where?

The answer to this all-important question is shown in Figure 2.

Figure 2. Illustration of the Butterfly Test Development Model

At all micro-iteration termini, and at some micro-iteration geneses, exists a small test butterfly.
These tiny test insects each contribute to the overall testing effort, encapsulating the test analysis
and design required by whatever minor change is represented by the micro-iteration.

Larger, heavier butterflies spring to life on the boundaries between design phase segments. These
larger specimens carry with them the more formal analyses required to transition from one
segment to the next. They also answer the call for coordination between the tests designed as part
of their smaller brethren. Large butterflies also appear at the transition points between test phase
segments, where documentary artifacts of test execution are created in order to claim credit for
the formal execution of the test.

System
Requirements

Software
Design

Software
Requirements

Implementation

Unit
Testing

Integration
Testing

System
Testing

Design Test

System
Requirements

Software
Design

Software
Requirements

Implementation

Unit
Testing

Integration
Testing

System
Testing

Design Test

The Butterfly Model of Test Development June 5, 2001

© 2001 Applied Dynamics International Page 9 of 14

A single butterfly, by itself, is of no moment – it cannot possibly have much impact on the overall
quality of the application and its tests. But a swarm of butterflies can blot out the sun, affecting
great improvement in the product’s quality. The smallest insects handle the smallest changes,
while the largest tie together the tests and analyses of them all.

The right-pointing lineage arrows, which show the roots of each test artifact in its corresponding
design artifact, point to the moment in the software development model where the analysis and
design of tests culminate in their formal execution.

Butterfly Thinking
 “A butterfly flutters its wings in Asia, and the weather changes in Europe.” This colloquialism
offers insight into the chaotic (in the mathematical sense of the word) nature of software
development. Events that appear minor and far removed from relevance can have a profound
impact on the software being created. Many seemingly minor and irrelevant events are just that –
minor and irrelevant. But some such events, despite their appearance, are not.

Identifying these deceptions is a key outcome of the successful implementation of the butterfly
model. The following paragraphs contain illustrations of this concept.

Left Wing Thinking
The FADEC must assert control over the engine’s operation within 300 msec of a power-
on event.

This requirement, or a variant of it, appears in every system specification for a FADEC. It is
important because it specifies the amount of time available for a cold-start initialization in the
software.

The time allotted is explicit. No more than three tenths of a second may elapse before the
FADEC asserts itself.

The commencement of that time period is well defined. The nearly vertical rising edge of the
FADEC power signal as it moves from zero volts (off) to the operational voltage of the hardware
marks the start line.

But what the heck does “assert control” mean?

While analyzing this requirement statement, that question should jump right off the written page
at the tester. In one particular instance, the FADEC asserted control by crossing a threshold
voltage on a specific analog signal coming out of the box. Unfortunately, that wasn’t in the
specification. Instead, I had to ask the senior systems engineer, who had performed similar tests
hundreds of times, how to tell when the FADEC asserted itself.

In other words, I couldn’t create a test sketch for the requirement because I couldn’t determine
what the end point of the measurement should be. The system specification assumed that the
reader held this knowledge, although anyone who was learning the ropes (as I was at that point)
had no reasonable chance of knowing. As far as I know, this requirement has never been
elaborated.

As a counterpoint example, consider the mass-market application that, according to the verbally
preserved requirements, had to be “compelling”. What the heck is “compelling”, and how does
one test for it?

In this case, it didn’t matter that the requirement was ill suited for testing. In fact, the testers’
opinions on the subject weren’t even asked for. But the application succeeded, as evidenced by

The Butterfly Model of Test Development June 5, 2001

© 2001 Applied Dynamics International Page 10 of 14

the number of copies purchased. Customers found the product compelling, and therefore the
project was a success.

But doesn’t this violate the “must be testable” rule for requirements? Not really. The need to be
“compelling” doesn’t constitute a functional requirement, but is instead an aesthetic requirement.
Part of the tester’s analysis should weed out such differences, where they exist.

Right Wing Thinking
Returning to our power-up timing example, how can we measure the time between two voltage-
based events? There are many possibilities, although most can’t handle the precision necessary
for a 300 msec window. Clocks, watches, and even stopwatches would be hideously unreliable
for such a measurement.

The test stand workstation also couldn’t be used. That would require synchronization of the
command to apply power with the actual application of power. There was a lag in the actual
application of power, caused by the software-driven switch that had to be toggled in the test
stand’s circuitry. Worse yet, detection of the output voltage required the use of a digital
voltmeter, which injected an even larger amount of uncertainty into the measurement.

But a digital oscilloscope attached to a printer would work, provided that the scope was fast
enough. The oscilloscope was the measurement device (obviously). The printer was required to
“prove” that the test passed. This was, after all, an application subject to FAA certification.

As a non-certification counter example, consider the product whose requirements included the
following statement:

Remove unneeded code where possible and prudent.

In other words, “Make the dang thing smaller”. The idea behind the requirement was to shrink
the size of the executable, although eliminating unnecessary code is usually a good thing in its
own right. No amount of pleading was able to change this requirement into a quantifiable
statement, either.

So how the heck can we test for this? In this case, the tester might rephrase the requirement in his
or her mind to read:

The downloadable installer must be smaller than version X.

This provides a measurable goal, albeit an assumed one. More importantly, it preserves the
common thread between the two statements, which is that the product needed to shrink in size.

Body Thinking
To be honest, there isn’t all that much thought involved in formally executing thoroughly
prepared test cases. The main aspect of formal execution is the collection of “evidence” to prove
that the tests were run and that they passed. There is, however, the need to analyze the recorded
evidence as it is amassed.

For example, aerospace applications commonly must be unit tested. Each individual function or
procedure must be exercised according to certain rules. The generally large number of modules
involved in a certification means that the unit testing effort required is big, although each unit test
itself tends to be small. Naturally, the project’s management normally tries to get the unit testing
underway as soon as possible to ensure completion by the “drop-dead” date for unit test
completion implied in the V model.

The Butterfly Model of Test Development June 5, 2001

© 2001 Applied Dynamics International Page 11 of 14

As the established date nears, the test manager must account for every modified unit. The last
modification of the unit must predate the configured test procedures and results for that unit. All
of the tests must have been peer reviewed prior to formal execution. And all of the tests must
have passed during formal execution.

In other words, “dot the I’s and cross the T’s”. It is largely an exercise in bookkeeping, but that
doesn’t diminish its importance.

The Swarm Mentality
To better illustrate the swarm mentality, let’s look at an unmanned rocket project that utilized the
myriad butterflies of this model to overwhelm bugs that could have caused catastrophic failure.
This rocket was really a new version of an existing rocket that had successfully blasted off many,
many times.

First, because the new version was to be created as a change to the older version’s software, a
complete and thorough system specification analysis was performed, comparing the system specs
for both versions. This analysis found that:

• The old version contained a feature that didn’t apply to the new version. A special extended
calculation of the horizontal bias (BH) that allowed for late-countdown (between five and ten
seconds before launch) holds to be restarted within a few minutes didn’t apply to the new
version of the rocket. BH was known to be meaningless after either version left the launch
pad, but was calculated in the older version for up to 40 seconds after liftoff.

• The updated flight profile for the new version had not been included in the updated
specification, although this omission had been agreed to by all relevant parties. That meant
that discrepancies between the early trajectory profiles between the two versions were not
available for examination. The contractors building the rocket didn’t want to change their
agreement on this subject, so the missing trajectory profile information was marked as a risk
to be targeted with extra-detailed testing.

Because of the fairly serious questions raised in the system requirements analysis, the test
engineers decided to really attack the early trajectory operation of the new version. Because this
was an aerospace application, they knew that the subsystems had to be qualified for flight prior to
integration into the overall system. That meant that the inertial reference system (SRI) that
provided the raw data required to calculate BH would work, at least as far as it was intended to.

But how could they test the interaction of the SRI and the calculation of BH? The horizontal bias
was also a product of the rocket’s acceleration, so they knew that they would have to at least
simulate the accelerometer inputs to the control computer (it is physically impossible to make a
vibration table approach the proper values for the rocket’s acceleration).

If they had a sufficiently detailed SRI model, they could also simulate the inertial reference
system. Without a detailed simulation, they’d have to use a three-axis dynamic vibration table.
Because the cost of using the table for an extended period of time was higher than the cost of
creating a detailed simulation, they decided to go with the all simulation approach.

In the meantime, a detailed analysis of the software requirements for both versions revealed a
previously unknown conceptual error. Every exception raised in the Ada software automatically
shut down the processor – whether the exception was caused by a hardware or software fault!

The thinking behind this problem was that exceptions should only address random hardware
failures, where the software couldn’t hope to recover. Clearly, software exceptions were
possible, even if they were improbable. So, the exception handling in the software spec was
updated to differentiate between hardware and software based exceptions.

The Butterfly Model of Test Development June 5, 2001

© 2001 Applied Dynamics International Page 12 of 14

Examining the design of the software, the test engineers were amazed to discover that the
horizontal bias calculations weren’t protected for Operand Error, which is automatically raised in
Ada when a floating point real to integer conversion exceeds the available range of the integer
container. BH was involved just such a conversion!

The justification for omitting this protection was simple, at least for the older version of the
rocket. The possible values of BH were physically limited in range so that the conversion
couldn’t ever overflow. But the newer version couldn’t claim that fact, so the protection for
Operand Error was put into the new version’s design. Despite the fact that this could put the 80%
usage goal for the SRI computer at risk, the possibility that the computer could fail was simply
too great.

Finally, after much gnashing of teeth, the test engineers convinced the powers that be to
completely eliminate the prolonged calculation of horizontal bias because it was useless in the
new version. The combined risks of the unknown trajectory data, the unprotected conversion to
integer, and the money needed to fund the accurate SRI simulation was too much for the system’s
developers. They at last agreed that it was better to eliminate the unnecessary processing, even
though it worked for the previous version.

As a result, the maiden demonstration flight for the Ariane 5 rocket went off without a hitch.

That’s right – I have been describing the findings of the inquiry board for the Ariane 5 in light of
how a full and rigorous implementation of the butterfly model would have detected, mitigated, or
eliminated them [LION96].

Ariane 4 contained an extended operation alignment function that allowed for late-countdown
holds to be handled without long delays. In fact, the 33rd flight of the Ariane 4 rocket used this
feature in 1989.

The Ariane 5 trajectory profile was never added to the system requirements. Instead, the lower
values in the Ariane 4 trajectory data were allowed to stand.

The SRI computers (with the deficient software) were therefore never tested to the updated
trajectory telemetry.

The missing Operand Error exception handling for the horizontal bias therefore never occurred
during testing, causing the SRI computer to shut down.

The flawed concept of all exceptions being caused by random hardware faults was therefore
never exposed.

SRI 1, the first of the dual redundant components, therefore halted on an Operand Error caused by
the conversion of BH in the 39th second after liftoff. SRI 2 immediately took over as the active
inertial reference system.

But then SRI 2 failed because of the same Operand Error in the following data cycle (72 msec in
duration).

And therefore, Ariane 5 self destructed in the 42nd second of its maiden voyage – all for lack of a
swarm of butterflies.

The Butterfly Model within the V Model Context
The butterfly model of test development is not a component of the V software development
model. Instead, the butterfly test development model is a superstructure imposed atop the V
model that operates semi-independently, in parallel with the development of software.

The Butterfly Model of Test Development June 5, 2001

© 2001 Applied Dynamics International Page 13 of 14

The main relationship between the V model and the butterfly swarm of testing activity is timing,
at least on the design side of the V. Test development is driven by software development, for
software is what we are testing. Therefore, the macro and micro iterations of software
development define the points at which test development activity is both warranted and required.
The individual butterflies must react to the iterative software development activity that spawned
them, while the whole of the swarm helps to shape the large and small perturbations in the
software design stream.

On the test side of the V, the relationship is largely reversed – the software milestones of the V
model are the results of butterfly activity on the design side. The differences between the models
give latitude to both the developer and the tester to envision the act of testing within their
particular operational context. The developer is free to see testing as the culmination of their
development activity. The tester is likewise free to see the formal execution of testing as the end
of the line – where all of the analytical and test design effort that shepherded the software design
process is transformed into the test artifacts required for progression from development to
delivery.

But the butterfly model does not entirely fall within the bounds of the V model, either. The third
issue taken with the standardized V model stated that the roots of software testing lay mainly
within the boundaries of the software to be tested. But proper performance of test analysis and
design require knowledge outside the realm of the application itself.

Testers in the butterfly model require knowledge of testing techniques, tools, methodologies, and
technologies. Books and articles about test theory are hugely important to the successful
implementation of the butterfly model. Similarly, software testing conferences and proceedings
are valuable resources.

Testers in this test development model also need to keep abreast of technological advancements
related to the application being developed. Trade journals and periodicals are valuable sources
for such information.

In the end, the tester is required to not only know the application being tested, but also to
understand (at some level) software testing, valid testing techniques, software testing tools and
technologies, and even a little about human nature.

Next Steps
The butterfly model of test development is far from complete. The model as described herein is a
first step toward a complete and usable model. Some of the remaining steps to finish it include:
• Creating a taxonomy of test butterflies that describes each type of testing activity within the

context of the software development activity it accompanies.
• Correlating the butterfly taxonomy with a valid taxonomy of software bugs (to understand

what the butterflies eat).
• Formally defining and elaborating the “objectives” associated with various testing activities.
• Creating a taxonomy of “artifacts” to better define the parameters of the model’s execution.
• Expanding visualization of the model to cover the spiral development model.
• Defining the framework necessary to achieve full implementation of the model.
• Identifying methods of automating significant portions of the model’s implementation.

Summary
The butterfly model for software test development is a semi-dependent model that represents the
bifurcated role of software testing with respect to software development. The underlying

The Butterfly Model of Test Development June 5, 2001

© 2001 Applied Dynamics International Page 14 of 14

realization that software development and test development are parallel processes that are
separate but complementary is embodied by the butterfly model’s superposition atop the V
development model.

Correlating the V model and butterfly model requires understanding that the standard V model is
a high-level view of software development that hides the myriad micro-iterations all along the
design and test legs of the V. These micro-iterations are the core of successful software
development. They represent the incorporation of new knowledge, new requirements, and
lessons learned – primarily during the design phase of software development, although the
formation of test artifacts also includes some micro-iterative activity.

Tiny test butterflies occupy the termini of these micro-iterations, as well as some of their geneses.
Larger, more comprehensive butterflies occupy phase segment transition points, where the nature
of work is altered to reach toward the next goal of the software’s development.

The parts of the butterfly represent the three legs of successful software testing – test analysis,
test design, and formal test execution. Of the three, formal execution is the smallest, although it
is the only piece explicitly represented in the V model. Test analysis and test design, ignored in
the V model, are recognized in the butterfly model as shaping forces for software development, as
well as being the foundation for test execution.

Finally, the butterfly model is in its infancy, and there is significant work to do before it can be
fully described. However, the visualization of a swarm of testing butterflies darkening the sky
while they steer software away from error injection is satisfying– at last we have a physical
phenomena that represents the ephemeral act of software testing.

References
BEIZ90 Boris Beizer, Software Testing Techniques (2/e), International Thomson

Computer Press, 1990.
MARI99 Brian Marick, “New Models for Test Development”, Reliable Software

Technologies, 1999, Available online at http://www.testing.com/writings/new-
models.pdf.

LION96 Professor J.L. Lions, Chairman of the Board, “ARIANE 5 Flight 501 Failure.
Report by the Inquiry Board”, 1996, Available online at
http://www.esrin.esa.it/htdocs/tidc/Press/Press96/ariane5rep.html.

Acknowledgements
Special thanks are due Elisabeth Hendrickson, who helped me see more of the world beyond the
aerospace boundaries I “grew up” in. Her review and suggestions have been immeasurably
helpful in framing this theory in its proper context.

