Using Defect Patterns to Uncover Opportunities for Improvement
Siddhartha Dalal!, Michael Hamada?, Paul Matthews, Gardner Patton

Bellcore
Morristown, New Jersey

1 Introduction

Although no one is happy to find defects in their software, defects are introduced and
removed continually during software engineering processes, and it is practically
necessary to acknowledge, record, and analyze those defects to make progress toward
higher standards of quality. The Orthogonal Defect Classification (ODC) methodol ogy,
first introduced by Ram Chillarege and his colleagues at IBM [Chil92, Bhan94], provides
one approach to analyzing defects. The ODC methodology has been adapted and
extended for use within Bellcore, and a web based tool set, called the Efficient Defect
Analyzer (EDA), has been developed to support ODC use on alarge scale. This paper
outlines how EDA has been successfully applied, potential pitfalls, and some possible
future directions.

2 Context of ODC Use in Bellcore

Prior to the use of ODC, a common methodology for analyzing defects was for each
project to form a defect analysis team, gather defect reports, and sit down together to
review each defect one-at-a-time to reach consensus on the root cause and what could be
done to prevent similar problems occurring. In some cases this process yielded some
valuable insights, but it was also inefficient, requiring an average of severa staff hours
per defect to investigate the historical facts and reach agreement. To the extent that the
defect analysis team assigned responsibility for each defect, conflicting interests limited
objectivity and could make the process unpleasant. As a result, defect analyses were often
limited to only the more serious defects reported by customers.

An ODC methodology was first tried as way to more objectively characterize and
quantify defects so that priority could be given to addressing the larger problem areas.
During these trial exercises, the defect analysis teams also discovered that they could do
their work more quickly using ODC, form a coherent explanation of the facts, and make
more convincing recommendations for software engineering process improvements. Such
favorable experiences led to a corporate decisison to use ODC more widely, and to the
creation of the Bellcore EDA tools to support a software systems organization of more
than 2500 people.

Today, software defects are classified by the staff who detect and who resolve the defects
as part of routine processes that record and track defects. These data are extracted from

1 Authors in alphabetical order. The authors also want to acknowledge contributions to
the work reported here by James Alberi, Y u-yun Ho and Kathy Musumeci.

2 Currently at the University of Michigan.

the tracking systems, and loaded into a corporate repository with web based access for
analysis.

3 Basics of Defect Pattern Analysis

A basicideain ODC analysesisto classify each software defect using several orthogonal
categories which describe different aspects of the defect. To make choices easier and to
facilitate statistical analyses, the number of possible classification values for each
category is intentionally small, about 10 or fewer. Although any one category captures a
limited amount of information, when all the categories are considered together, a
meaningful and rich characterization emerges.

The EDA tools support analyses of the relative frequencies of classification values, which
we call "defect patterns’. A general goal is to enable software product teams to improve
engineering practices by discovering, investigating, explaining, and correcting unusual
defect patterns.

3.1 EDA Categories

The following categories are used to classify each software defect, when the defect is
detected,

Lifecycle phase when the defect was detected
Trigger, what was done to detect the defect
Impact that the defect had or would have on the customer
Severity of the impact from the customer's perspective
and when the fix is known,
Defect Type, the type of software change that needed to be made
Defect Modifier, missing or incorrect software
Defect Source, change history of the code
Defect Domain, generic platform and subsystem
Fault Origin in requirements, design, or implementation.

Over time, the classification values used for each category have been tuned to be more
meaningful to our EDA users, but have remained sufficiently general to make
comparisons across products.

3.2 Episodes

For analyses, the classification data are segmented into distinct "episodes’, usually
defined by software product and release, and sometimes by subsystem or component. An
episode should be a distinct work effort associated with a particular time period. We have
found that comparing episodes is a key step in successful defect pattern analyses, because
other episodes provide an objective basis for what patterns to expect, and concrete
examples of what can be done differently.

3.3 Example Defect Pattern

The following table illustrates a defect pattern composed from two categories, Lifecycle
and Defect Modifier.

Lifecycle Phase
N =132 Code Unit Multiple Product
Inspection Test Unit Test Test
Defect Missing 2% 3% 11% 20%
Modifier Incorrect 16% 19% 17% 12%

These data could aso be represented as a chart, for example by using a spreadsheet
program or a chart widget. The number of defect records, 132, implies something about
the statistical reliability of the pattern.

On inspection, the gray cells appear to be unusual pattern elements, being relatively
higher or lower than other cells in the same row or column; one function of the EDA
toolsis to highlight highs and lows based on sound statistical and data mining principles,
pointing out unusual features of the data that should be investigated and explained. In
this example, relatively few Missing defects (e.g., code that was needed but not written)
were found in the Code Inspection and Unit Test phases, while alot were found in
Product Test. One possible explanation is that programmers were intent on verifying the
code that they had, but were less aware of the required functionality.

The one-way tables for Lifecycle Phase and Defect Modifier, below, suggest other
possible pattern elements.

Lifecycle Phase
Code Unit Multiple Product
Inspection Test Unit Test Test
18% 22% 28% 32%
Defect Missing 36%
Modifier | |ncorrect 64%

Relatively more defects were detected in later lifecycle phases, which is a danger sign but
not very specific. And the split between Missing and Incorrect seems typical, until one
examines the differences between lifecycle phases. In general, our experience suggests
that insights are more likely to come from looking at two-way and higher classifications.

3.4 Seeing Patterns

In early ODC trias, an expert consultant helped defect analysis teams sort through the
classification data by visually inspecting charts for patterns. But there were complications
in extending this approach.

Just 9 categories implies 36 two-way and 84 three-way combinations, and considering
subsets of the data (e.g., "drilling down") further increases these numbers. Human
observers are not usually effective in looking at datain so many different ways
without mechanical assistance.

Distinguishing meaningful patterns from random variation is not easy for the human

eye, particularly when the number of software defectsis relatively small. Chasing
after noise can waste resources.

Analysts did not always pick out the same patterns for special attention. The expert's
judgment could not easily be replicated.

To scale up to wider use, the analysis methods were strengthened.

More emphasis was placed on comparing patterns between episodes, that is,
expectations were defined objectively using actual data. This led to the creation of a
corporate repository, where classification data for different software products can be
shared for analysis.

Software tools were created to scan through al the category combinations and to
highlight the more unusual patterns, using strong statistical filters to reduce noise.
Analysts could then focus their attention on the highlights.

3.5 Whole Process
Finding unusual patternsis one step in alarger process, outlined below.

Collect EDA data when a defect is first recorded and when the software is fixed.
Compared with retrospective classification (e.g., at the end of a software product
release), this saves time and ensures that the person doing the classification knows
what the defect really was.

Use a shared corporate repository to make comparisons with other episodes. A high
(or low) percentage of one kind of defect may or may not be a problem, depending on
what comparison data show; for example, a 36-64 split between Missing and
Incorrect may not be alarming if those percentages are similar to other episodes, but a
contrasting 64-36 split may be. Expect to make several comparisons, including with a
previous release of the same software product, and with another contemporary
product.

Describe each unusual pattern element briefly in words. Collect these facts together,
and write a summary in plain language that anyone can read. Spot check the original
defect records to make sure that the summary is consistent with the details.

Elaborate on the summary to tell a high level story of what happened that explains the
data. Investigate to confirm the story, and to decide between aternative
interpretations. Start by telling the story to afew key people who were involved in the
episode.

When the story seems solid, propose specific actions to address any issues raised by
the story. Support and quantify the proposal with exhibits drawn from the data.

Keep in mind that these process steps may need to be executed quickly and at short
intervals, perhaps as often as every week, to monitor software defects at critical stages
and to take action to address problems that may be building up. Being able to see defect
patterns in a few minutes makes this possible.

4 Case Study Example

Performing EDA analyses using a large repository of good quality data may seem easy,
but that repository can take years to build up, and some people are discouraged from
trying because they want results now to deal with today's pressing quality issues. The
case study discussed below illustrates what can be done even with imperfect data.

4.1 Scenario

There were three software products in the case study scenario, named A, B and C. The
focus was on product A, releases 2 and 3; the comparison episodes were product B
release 3 and product C release 3. The defect analysis team was mainly concerned with
field defects (i.e., defects discovered by their customers).

4.2 Comparing With a Previous Release

The first step was to compare the two releases of product A. There were 31 recorded field
defects for release 2, and 50 for release 3.

The EDA analysis software did not highlight any of the classification patterns as different
between the two releases. Since the defect analysis team members believed that the
product components and software engineering processes were similar between the two
releases, they decided to combine the data from the two releases to get greater statistical
power for other comparisons.

4.3 Comparing With Another Product

Product A was then compared with a contemporary release of product B. However, the
product B data as they stood contained only severity 2 (i.e., fix needed as soon as
possible) defect records, so the analysis was restricted to the subset of severity 2 defects.
There were 38 severity 2 field defect records for product B, and 10 for product A.

The following unusual pattern elements were highlighted by the EDA tools in comparing
product A with B. (Click hereto view al the one-way and two-way patterns.)

Impact: Low percentage of Capability problems
Impact x Source: High percentage of Reliability problemsin Old Functionality
Trigger x Domain: High percentage of Start/Restart problems in Server Processes

Next, product A was compared with product C, for severity 2 and then for severity 3 (i.e,,
fix less urgent) field defects. Product C had 134 severity 2 field defect records, and 175
severity 3 records; product A had 71 severity 3 records. (Product C was much larger than
product A, with more software components, and was expected to have more total
defects.)

The following unusual pattern elements were highlighted for severity 2 defects,
comparing product A with C. (Click here to view all the one-way and two-way patterns.)

Trigger: High percentage of Workload Stress problems

Defect Type x Trigger: High percentage of Algorithm problems under Workload
Stress

Defect Type x Impact: High percentage of Algorithm problems have Reliability
impact

Defect Source: High percentage of problems found in Old Functionality

Defect Source x Impact: High percentage of problems found in Old Functionality
have Reliability impact

And for severity 3, the following unusual pattern elements were highlighted. (Click here
to view all the one-way and two-way patterns.)

Domain: High percentage of GUI problems
Defect Domain x Impact: High percentage of GUI problems with Usability impact

Defect Domain x Fault Origin: High percentage of GUI problems due to
Implementation

Fault Origin: High percentage of Requirements problems

Fault Origin x Defect Domain: High percentage of Requirements problems for Server
Processes

Defect Type x Trigger: High percentage of Algorithm problems found under
Workload Stress

So far, these are just lists of facts about the data that can be mechanically derived from
looking at the highlighted cells in unusua defect patterns.

4.4 Comparing with Null Hypotheses

When no comparison episodes are specified, the EDA analysis software compares the
null hypotheses that categories are independent and that classification values are equally
frequent.

When the null hypothesis comparisons were done for the 10 product A severity 2 field
defects, no pattern elements were highlighted (i.e., the null hypotheses could not be
rejected). Thisisin contrast to the interesting story that emerged from comparing the
same 10 records with the severity 2 field defects in projects B and C.

When &l 81 product A records were compared with the null hypotheses, the statistical
power was greater due to the larger number of records, and a bunch of pattern elements
were highlighted. (Click hereto view all the one-way and two-way patterns.)

Trigger: High percentage found in Normal Mode of operation
Impact: High percentages of Usability and Reliability problems

Severity: High percentage of severity 3 problems

Defect Modifier: High percentage of Incorrect
Defect Type: High percentages of Checking, Assignment, and Algorithm
Defect Domain: High percentage of GUI problems

Defect Source: High percentage of Old Functionality, New Functionality, and
Rewritten Code

Fault Origin: High percentage of Implementation

Trigger x Defect Type: High percentage of Algorithm problems found under
Workload Stress

But many of these highs and lows had little meaning because some classification values
tend to have relatively high or low frequency for just about every episode. For example,
Normal Mode, Severity 3, and Incorrect are the usual majority values for their respective
categories.

In practice, it is difficult to pick out salient features of the data without a realistic
comparison

4.5 Putting the Story Together
The next step was write a coherent summary of the unusual pattern elements, as follows.

“There were arelatively high number of reliability problems concentrated in older
code.”

“Workload stress reveaed a relatively high number of algorithm errorsin older code
that had severe reliability impacts.”

“A relatively high number of server problems were found during system restarts.”

“There were arelatively high number of GUI problems. However, these problems

only affected usability and were not severe. A relatively high number of the GUI
problems were due to implementation errors.”

Based on followup investigation and discussion with other project members, project, the
following story about project A emerged.

“An optimization algorithm, originally programmed in release 1, failed in cases
where high arrival rates caused a queue to grow beyond an expected limit. When a
failure occurred, a database record could be stranded in an inconsistent state, causing
arestart to fail.”

“New hire GUI programmers did not fully understand how to use the programming
environment to implement the GUI design, and failed to handle some events properly.
Also, as the design evolved, some of the online messages to the user got out of sync
with the functionality.”

4.6 Proposing Action

The defect analysis team proposed several changes to address what they perceived to be
chronic problems in the way their project had been doing their work compared with other
projects.

"Provide more algorithm details in design documents, including assumptions about
the runtime environment and possible limitations. In both design reviews and code
inspections, reviewers should require information about the performance of
algorithms under extreme conditions.”

"Exception handling code should be written to take over when expected limits are
exceeded. Product testing should include high stress cases, and verify that exception
handling code has been executed successfully."

"Create alist of all information messages that can be sent to a user. Testing should
include cases that invoke these messages.”

"Senior programmers should conduct monthly seminars on GUI design and
programming; attendance should be mandatory for everyone involved in developing
GUIs. A senior programmer with design knowledge should be involved in every GUI
code inspection.”

This list focuses on problems that were uncovered by the analysis. If no analysis
methodology had been followed, the team would have risked making debatable proposals
based on personal prejudices, rather than consensus proposal's based on a shared
perception of actual data.

4.7 Reviewing the Analysis
The analysis described in the case study was not ideal. For example,

More defect records for earlier lifecycle phases would have helped fill in the picture
of what kinds of defect were detected before product A was given to customers. For
example, one might assume that GUI testing was dlack if the customer found a lot of
problems, or adternatively, that there so many GUI defects that even a very high
remova rate was not good enough; without the data, we cannot say for sure.

The Product B data should have included al defect records, not just the more severe.

Some of the unusual pattern elements were ignored. Explicitly providing
explanations, however obvious or trivial, would be better, because otherwise a
significant fact sometimes gets overlooked.

Taking more time to talk with their colleagues in the projects supporting Products B
and C might have generated some additional ideas for improvements. Also, those
projects would have benefited from a symmetric analysis comparing their products
with product A.

Nevertheless, the story based on the defect patterns made sense to the team, fit the

available data which helped convinced other people, and was the basis for specific action
to improve software engineering practices across severa lifecycle phases. And the defect
analysis team's study began and ended on the same day, consuming less than 20% of the

resources that would have been required for a traditional root cause analysis of the same
defect records.

5 Potential Pitfalls

Our experience in rolling out the EDA methods and tools to a large organization suggests
anumber of potential pitfalls.

Already knowing the answers. Although it seems incredible, the stories told about
software defects sometimes bear no clear relationship to any data, but instead reflect
longstanding prejudices. Requiring defect analysis teams to explain the actual data
goes along way to inspire fresh thinking. Early involvement of expert consultants
often seems necessary to induce people to pay more attention to the data.

Incomplete data. Software defects that are not classified, or not recorded at all, can
introduce statistical bias. One solution is to establish clear criteria for what defects
ought to be recorded, and to require EDA classification before they can be cleared.
For example, a general rule might be to record all defects, found in any lifecycle
phase, that could affect a customer, and to require complete EDA classifications
before changed software can be delivered for inclusion in arelease.

Improper or inconsistent classification. Strange classifications tend to stand out as
unusual patterns, and are easily detected. Our experience suggests that most people
can learn to classify defects fairly well with an hour or two of practice in a group
training seminar. Ongoing peer review, for example, in the context of defect analysis
teams, and monitoring of data quality by corporate metrics experts are recommended.

Pounding down nails. A common first impulse in defect analysis teams is to identify
classification values with larger percentages of defects, and to do something about
reducing those numbers. This may make sense in some cases, for example, when zero
defects are expected, but it does not make sense in general, because proper patterns
are unlikely to have uniform cell frequencies. Also, in some lifecycle phases, low (not
high) percentages may be more cause for concern if suspected defects are not being
detected. Teams need to think about reducing the total number of product defects, and
also about achieving a proper pattern for each lifecycle phase and defect detection
activity.

Isolation. Due to the way software defect statistics have been handled in the past,
some projects may be reluctant to share their defects data, and skeptical of the data
that other projects provide, preferring to analyze their own data in isolation. But
comparisons with other episodes are a key source of learning, and additional outside
perspectives help gel constructive plans for improvements. As suggested by the case
study, it is not easy to learn from one's own experience aone.

6 Future Directions

Our EDA experience has been consistently positive and continues to expand. As with
other metrics and data analysis efforts, success depends on assiduous attention to data
quality and the patience to build up data to establish baselines and do comparisons.

Enabling defect analysts to do their work efficiently by providing appropriate
infrastructure and analysis software has been a central focus of our EDA tools effort.

Going forward, we expect to evolve the EDA tools and methods in several directions.

Software defects detected later in a product release cycle seem more compelling due
to the nearness of customer impact. Detailed records of field faults and defects
uncovered by organized testing are commonly available, and provide a natural
starting point for EDA analyses. However, we also believe that some of the more
troublesome defects are introduced and could be detected much earlier. We are
currently working to extend our EDA practices to requirements and design reviews
and other early processes that constrain what the software later becomes.

Although reasoning based on statistics can be quick and effective, we think that many
analysts would benefit from advanced visuaization techniques. For example, we have
used emerging web 3D programming techniques to show categorical data as
multifaceted objects that can be viewed from different angles and taken apart.
Combined with statistical highlighting, we think such techniques will enable users to
understand more EDA analyses at a glance.

We think that automation of EDA analyses can reach the point where the human
analyst need only confirm or choose between conjectures offered by the analysis
software. Not all the information needed to complete a software defects analysisis
available in databases: it will still be necessary for the analyst to do some redlity
checking and provide feedback. This level of artificial intelligence would enable more
analysts to be successful with less effort and training.

If you have been thinking about trying approaches like those discussed in this paper, we
encourage you to do so.

7 References

[Chil92] R. Chillarege et al., "Orthogonal Defect Classification -- A Concept for In-
Process Measurement”, IEEE Transactions on Software Engineering, Vol. 18,
No. 1, 1992.

[Bhan94] I. Bhandari et a., "In-process improvement through defect data interpretation”,
IBM Systems Journal, Vol. 33, No. 1, 1994.

10

Paul Matthews

Paul Matthews is a software engineer in Bellcore's Applied Research area, located in
Morristown, New Jersey. Mr. Matthews has 21 years experience in major
telecommunications research and development companies, including assignments as a
statistics and data analysis consultant, software system designer and developer, software
engineering course developer and instructor, advanced technology prototyping and
technology transfer agent, and his current assignment as a research scientist supporting
quality assurance. Mr. Matthews has a Ph.D. in experimental psychology from Stanford
University, where he did research in cognitive sciences and statistics. He is keenly
interested in objective assessments of software engineering practices, and in project
management and process improvement based on data.

	Paper
	Bio

