

By Thirumalai V.M.
© Cognizant Technology Solutions, May 2003

All rights reserved. You may make one attributed copy of this material for your own personal use.
For additional information or assistance please contact Thirumalai at 91-44-2254 0555. www.cognizant.com • No. 4 Canal

Bank Road, Taramani, Chennai 600 113. India.

Automated Testing approaches

- Thirumalai V.M

Cognizant Articles. © 2002 Cognizant Technology Solutions, India Pvt. Ltd

Table of Contents

About Application ... 5
Architecture Incorporated ... 6
Conclusion .. 11

 Automated Testing approaches

Cognizant Articles

 Automated Testing

Abstract
Automated testing is recognized as a cost-efficient way to increase application
reliability, while reducing the time and cost of software quality programs . Some of the
common reasons for automating are Reducing Testing Time, Reducing Testing Costs,
Replicating Testing Across Different Platforms, Repeatability and Control, Application
Coverage and Results Reporting.

There are various tools available in the market, Here we are going to present about the
Winrunner. The architecture we adopted is the Data Driven. Automation is done for the
client server application. It’s an Insurance domain application. The application has to be
tested for different States in U.S.

© 2002 Cognizant Technology Solutions, 38 & 39 Whites Road• Chennai • 600 014• India

About Application

It’s an Insurance domain based application. Its an client server
application. Its the leading independent agency writer of automobile
insurance in California and has been one of the fastest growing
automobile insurers in the nation. Automobile insurance is also written
in Florida, Georgia, Texas, Illinois, Oklahoma, New York, and Virginia. In
addition to automobile insurance, It writes other lines of insurance in
various states, including mechanical breakdown and homeowners
insurance.

Brief Description of Application?

Application takes the input from the Insurer who really wants to covered
by a typical policies like auto, homeowners and so on. The application is
automated for the Homeowners module which covers the HO-3, HO-4
and HO-6 types of policies. Depends on the Policy types the GUI changes
at the run time. Homeowners module is divided into Basic Info, Dwelling
Info, Additional Questions, Coverage, Point of Sale and Binding modules.
Each module is designed in an hierarchy and separated by Tab’s and Sub
Tab’s. Once the valid data’s entered in each module, the premium has
to be calculated for the coverage he has chosen. The application is used
to generate the policy for the Insurer.

The above figure can give a high level view on Application architecture

Introduction

Application Server

P
A
R
T
N
E
R

S
E
R
V
E
R
S

Client Machine

INTERNET/INTRANET

Database

server

Database

Cognizant Articles

Architecture Incorporated

This section speaks about the process we adopted to automate the
testing process. Data Driven architecture has been adopted we have
prepared data sheets for each locales because the functionality may
differ based upon the different locales. Some locale has a specific
coverage for Earth quake, Hail Strom and so on. It is difficult to handle
these in the Test script. The Data Driven excel sheet is prepared based
on the Locale and the script is made generic. The script is driven based
on the Excel sheet.

 The Approach

The Script
Layout

Application Main Script

Calls init script which initialize all the system variables

Reads the Agent code, State and the Host from the Excel
file “StateAgentHost.xls”

Calls the close_application script. If the application
already opened it closes and restarts it.

Calls the setstate script – this script executes the
setstate.exe and updates the agent code, state and

Host m/c in the registry

Calls the start_application script. The starts and log
into the application.

When the all the depended scripts executed
successfully then closes the application

© 2002 Cognizant Technology Solutions, 38 & 39 Whites Road• Chennai • 600 014• India

The Main script made use of existing supporting WR (WinRunner)
Function Libraries and a new library based on application depended
functionality. At the time of writing, most function libraries used by this
script are location: <drive>\<State>\<Module Name>\New Scripts\Libs\
folder. Some libraries are located in the WR installation path but these
are libraries installed with the product.

This script can be executed from either TD (Test Director) or WR. When
executed directly from WR, the State to execute is set into the variable
state_to_run (which is at the beginning of the script).Note that it is
necessary to “set” the State value so the name of the DT (data table)
can be determined. The path to find the data table(s) is defined in the
variable DT_path at the beginning of the function library Application_lib.
When executed from TD the full path of the DT must be passed to the
script via the parameter scriptparm_Datatable. When passing this path,
the double backslashes must be retained between the folder and file
names (and four backslashes at the beginning of the path when using
UNC notation). The State and agent values are obtained from the DT
and must be present in the first row on the DT in the columns State and
Agent respectively.

The state value is also used to build the name of the WR GUI file to load
to allow processing of different states. The GUI file(s) are names must
end with the two-character abbreviation of the state. For example:
Homeowners_CA, Homeowners_FL. The GUI files are stored in TD.

This script also uses the QS_NB GUI file. This file contains all the
windows not related directly to Homeowners Assignment.

This script was designed to handle positive data. It can handle the error
window when it appears (which indicates edit/cross-edit errors) and will
stop processing the current test case and move to the next test case.

Introduction

Cognizant Articles

This script is data-driven. By using the information found in the data
table, the script navigates through the app and populates objects found
in the major tabs (and sub-tabs) found in the application.

The data table, which drives the script, has eight columns that allow
application navigation and entry of data. The columns are as follows:

Test_Case: The value in this column is used to identify a test case.
This can contain any value (numeric or alpha numeric). When the value
changes this will trigger a new insurance application to be started
(pressing the New button). Note: when the test case name changes the
name of the test case is written to the Test Results and Log file.

Tab: The value in this column represents the navigation through the
main tabs of the application or an action to perform against the
application. The values in this column must be Basic Info, Dwelling Info,
Additional Questions, Coverage, Servant’s Info, Additional Question
Details, Loss History, Coverage, CA Earthquake Authority (the preceding
is not a tab but a popup window which appears in the Homeowners
Assignment), Coverage, Additional Info, Point of Sale, Binding, Validate
Rate, Exp Results. Validate Rate and Exp Results are not tabs but
actions to take upon the application. Validate Rate will cause the
Validate Rate button to be pressed and Exp Results are the expected
results found in the Discount/Rate Factors (sub) tab. Order is very
important as this represents the order to navigate thru the tabs.

Sub_Tab: The value in this column represents sub tabs found in some
tabs. Note that not all tabs have sub tabs. The valid sub tabs are
Warranty, Add Warranty, Description, Additional Info, Mortgagee Info
and Payment Info

Next_Tab: The value in the column “Yes” is used to refer the Data is in
the Next main tab. So that script can identify and process to the Next
main Tab.

Occurrence: Denotes the occurrence that data represents. Drivers and
vehicles have occurrences. Occurrence is also used to associate a driver
to a vehicle.

Field: The value in this column represents the name of the field to
populate or the name of the column to validate.

Data: The value in this column represents the data to place in the field.
If the data value is empty or null the field will not be populated (see
PopulateField function for exceptions to the above rule). Remember to
correctly format fields. For example: date and time fields.

Script Flow

© 2002 Cognizant Technology Solutions, 38 & 39 Whites Road• Chennai • 600 014• India

Actual Results: The Actual value found in the application will be read
and write besides the excepted column row. This feature is providing so
that user can easily check whether the excepted and actual result
matches.

As mentioned earlier, the State and Agent columns need only have the
first row populated. The state and agent are set once at the beginning
of script execution.

The relationship between the data table values and the method used to
identify objects to populate is critical in this script. The GUI map for
this script consists of the objects found in the application using the
following naming convention: Tab, Sub_Tab and Field. There are
occasions when Occurrence is used to identify fields (and appended to
the end of the Tab, Sub_Tab, Field combination). The combination of
the column values is used to build the name of the object to look for in
the GUI map. The names used in the DT match those found in the GUI
map. All the field names in the GUI map are upper case and the Tab,
Sub_Tab and Field column data are converted to upper case to make the
match with the GUI map.

This script, which may seemingly be complex, is really simple. The main
script itself drives the navigation through the application and a User
Defined Function named PopulateObject does the population of the data
into the application.

The script processes all records found in the data table. For the most
part, each row of the data table represents the population of an object
on the application (the exceptions being Validate Rate and Expected
Results). Each data table contains one to many test cases. Each State
should be its own data table. The script could be modified to process
multiple states. Based on the change of the entry found in the Tab or
Sub_Tab column the script will perform some navigation action (usually
pressing F8, F5, selecting a tab or pressing a button).

This approach allowed the population of the apps objects to be a very
simple routine. The logical name of the object is constructed (as
outlined above) and then the object’s class is extracted from the GUI
map using the GUI_buf_get_desc function.

There are only six types of objects in the app (edit, list and
check_button, radio button, Tab, button) and two of those are used 99%
of the time. Once the class is determined then the appropriate “set” or
“select” function is used to perform the action upon the object. The
User Defined function, which does all this, is called PopulateObject.
There are some exceptions to the way certain fields are handled and this
is all coded in the PopulateObject function. Some fields behaved better

Cognizant Articles

when handled other than the “normal” way. This mainly applies to edit
objects where a obj_type works better than the edit_set (for example,
date and time fields). Also, some fields select a default value and
ignore any entry in the data table.

This library contains many of the supporting functions for the Application
Main script. All the functions have a short description in the library
itself. Some function will have some further details below.

HomeownersInit – This function is executed as soon as the
HomwOwners_lib is loaded. Remember that the variable declarations at
the beginning of HomwOwners_lib are automatically done when the
library is loaded.

PopulateField – This function handles population of all objects in the
app. Keep in mind that some fields require special handling. This is all
done in this function

TabSetWindow – Performs the set_window on the appropriate window
based on the name of the tab found in the DT. Most tabs belong to the
Application window but there are three exceptions that are handled in
this function. To press any button on the left side of the app, the
current window must be Application. This is the only window that has
these button defined.

ValidatePaymentFactors– This function will perform the validation of
the expected results found in the DT (“Expected Results” in Tab
column). The DT “Field” column has the name of the table column to
check. An associative array at the beginning of the function indicated
which physical column of the table relates to these columns. When all
expected matches actual data, one message is written to the Test
Results indicating all matched. When a mismatch occurs, only the
mismatch is written to the Test Results (the matches are not).

CheckForErrors – This function attempts to allow the script to recover
from the error dialog that can display upon navigation from a tab. When
an error is found the script should log the error messages to the Test
Results and then skip processing the remainder of the test case.

Major Functions

© 2002 Cognizant Technology Solutions, 38 & 39 Whites Road• Chennai • 600 014• India

For debugging purposes, a column named Debug can be added to the DT.
When a non-empty value if found in this column then the script will
break just inside of the main DT loop.

Conclusion

Thus we have practically automated the complete work flow for this
project. The time consumed for scripting the work flow is considerably
took less time and the maintainability is of code is very easy compared
with the play back technique. The main advantage of this architecture is
if we want to test any new functionality we don’t want to touch any
scripts. Instead update the Data Driven Excel sheet is more than enough.
Thus we can automate for all the functional areas in the application we
want to test in a short span of time.

Other
Information

