
www.s tqemagaz ine .com STQE September/Oc tobe r 2001
4

Agile Methods have been gaining at-
tention lately—the most well-known of
these being eXtreme Programming
(XP). Other examples include Adaptive
Software Development, Crystal, Dy-
namic Systems Development Method,
Feature-Driven Development, Scrum,
and XBreed. Our group’s goal was to
find what these different methods had
in common. The resulting Manifesto
for Agile Software Development
(posted at www.AgileAlliance.org) offers
the statement of values shown in Fig-
ure 1.

For me, two key imperatives un-
derlie these values.

Working Code
In his fine book Hackers, author
Steven Levy describes the Hands-On
Imperative. It says to get your hands on
the computer and make it do some-
thing. Programmers are often in the
grip of the Hands-On Imperative; that’s
why they don’t like to write documenta-
tion. Agile Methods accept the Hands-
On Imperative, but extend it to the
users.

Why? Author Reinhard Keil-Slawik
puts it this way: “Thinking does not
take place inside our heads...Most of
our mental activities need external re-
sources.” Different resources lead to
different ways of thinking. Someone
who adds with an abacus thinks differ-
ently about addition than does some-
one who uses the Indian decimal num-
bering system and a pencil and paper.
And a user asked to evaluate an ab-
straction like a requirements document
or a design model thinks profoundly
differently than one presented with
working software.

As German researchers Reinhard

Budde and Heinz Züllighoven have
written, “When we formalize, we ex-
plain how an object functions; when
we work purposively with a thing, we
understand what it means.” So when
we sit a user down in front of the
screen for the first time, her reaction—
“Wow, this is not what I expected”—
doesn’t represent any sort of failure.
It’s not that we didn’t do a good job
“capturing” requirements, or that the
reviews weren’t planned carefully
enough, or that the user wasn’t proper-
ly trained in our modeling notation, or
anything like that. It’s just that we hu-
mans simply cannot imagine the real
experience by studying an abstraction.

Because Agile projects understand
that, they deliver working software (or
perhaps executable prototypes) as
quickly as possible and as frequently
as practical. Development is organized
into a rapid series of functionally com-
plete releases, each one made available
for the user to try. Since each such re-
lease is really the first chance the user
has had to think about the new fea-
tures, rework is just part of the job—
not a crisis.

Conversing People
With less documentation, how do Agile
projects keep everyone in synch? With
an imperative toward human contact:
face-to-face conversation and collabo-
ration. XP has people program in pairs
and tries hard to have a customer rep-
resentative working every day in the
same bullpen as the developers. Anoth-
er Agile method, Scrum, relies on care-
fully crafted daily standup meetings
that create and preserve group under-
standing. Crystal, perhaps the least
dogmatic process conceivable, never-
theless insists on frequent retrospec-
tives. These techniques foster the com-
munication that documents cannot
replace.

All Agile methods want customers
to be part of the team. With a suitable
customer representative at hand, you
don’t need a detailed requirements
document. When you have a question,
you turn around and ask. Worried that
you won’t know to ask the right ques-
tion? Implement something and show
it to the customer for a quick reac-
tion—you’ll quickly learn if you’re go-
ing off track.

In an Agile project, conversation
is carefully designed to avoid a lot of
idle chatter. Talk will be pragmatic,
concentrating on some object of work.
But there’ll be a background of tacit
understanding of the fundamentals, so

Technically SpeakingTechnically Speaking

Agile Development
by Brian Marick

In February, I participated in a convocation of people who’ve

created or worked on “Agile Methods.” You may not be famil-

iar with that relatively new umbrella term, but individual

We are uncovering better ways of developing software
by doing it and helping others do it. We value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation

Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on the right,
we value the items on the left more.

FIGURE 1 Manifesto for Agile Software Development

This article is provided courtesy of STQE,
the software testing and quality engineering magazine.

http://www.stqemagazine.com/

that different people will reflexively
make consistent choices when con-
fronted with similar problems.

Agile Testing
These same imperatives can underlie
a practice of Agile Testing (www.
testing.com/agile). Agile Testing would
most obviously apply to Agile Devel-
opment projects, but it should work—
perhaps less well—on conventional
projects too.

The first step is to abandon the
notion that others communicate “at”
us with requirements and design doc-
uments, and that we communicate
back at them with test plans and bug
reports. We’ve always realized that
the documents we base our tests on
are flawed—incomplete, incorrect,
and ambiguous—but our reaction has
been to insist, in our usually power-
less way, that the document producers
should do better. But now we can see
that “better” will never be good
enough. Documents can’t be an ade-
quate representation of working code.
So we can let go of the illusion that
documents will save us. We can view
them as they are: interesting texts,
partly fictional, often useful.

Rather than communicating at
people, we need to join and encour-
age the ongoing project conversation.

Testers and developers should sit in
the same bullpen, share offices, or
occupy alternate cubicles. Except for
some types of testing in which it
doesn’t make sense (such as configu-
ration testing and some types of
stress testing), testers should be as-
signed to help particular developers,
rather than to test pieces of the prod-
uct. The test plan should evolve
through a series of what testing con-
sultant James Bach calls “drop-in
meetings”: short, low-preparation, in-
formal discussions of particular top-
ics. These will result in what Mi-
crosoft test manager James Tierney
calls “test doclets”: short memos ad-
dressing a specific issue. Test status
should be reported via big, public,
simple-to-read charts that answer
specific development questions like
“what parts of the product can we
stop worrying about?”

Conversation with the customer
is as important as with the develop-
ers. Remember: Customers are trying
to figure out what they need, want,
and are getting—in large part by try-
ing out the working code. Testers
should sit down with them as they do
that. Creating some tests together is
an excellent way for both of you to
learn what matters—and also to de-
scribe it to the developers in a clear

and concrete way.
That’s an instance of the Hands-

On Imperative. Exploit that with de-
velopers as well. The normally
strained relationship with them will
be less stressed if they see you wanti-
ng to get started testing, even on
something unfinished, especially if
your expressed goal is to help them
improve and complete it. They’ll val-
ue tests they can run as they continue
development.

Agile Testing is not the answer for
all projects. Neither is any of the Agile
Methods named at the beginning of
this article. No single approach can
be. But the Agile approach is a con-
scious and well-crafted departure from
conventional software development
styles—one that deserves your careful
attention. STQE

Brian Marick (marick@testing.
com, www.testing.com) is an STQE
technical editor. [Author’s note:
Quotes are from Software Develop-
ment and Reality Construction.]

www.s tqemagaz ine .com STQE September/Oc tobe r 2001
6

Technically SpeakingTechnically Speaking

STQE magazine is produced by
STQE Publishing, a division of
Software Quality Engineering.

This article is provided courtesy of STQE, the software testing and quality engineering magazine.

http://www.stqemagazine.com/

