
46 BETTER SOFTWARE SEPTEMBER 2005 www.StickyMinds.com

Tool Look

A Look at PerlClip
by Danny R. Faught

PerlClip is an eclectic little script I
frequently use to generate test data for
exploratory testing. PerlClip was born
when I was showing James Bach how I
use a single line of Perl code to generate
many different types of test data that I can
then copy and paste into the application I’m
testing. He asked me if Perl could place data
directly onto the clipboard so it didn’t have
to be copied manually. After a bit of
research, I found out that it could. Later,
James implemented this initial concept as
a tool with several useful features and
thus deserves the credit for making it a
reality. (See the StickyNotes for references.)

How It Works
PerlClip uses a command line interface

to accept a number of different commands.
You can run it from the MS-DOS command
line or a Unix-style shell. After each
command, the test data you specified is
placed directly onto the system clip-
board. Then you switch back to the
application you’re testing and paste it
right in. With some additional effort,
you can place the data into a file for use
in your testing.

Counterstrings
When I do exploratory testing, I often

check to see how many characters I can
stuff into each alphanumeric input field.
You’ve probably tried this before. You
either randomly pound on the keyboard
or lean on one key for a long time. But if
you do find a bug, how can you describe
the process of reproducing it? I like to be
more precise, so I use the PerlClip feature
called “counterstrings.” These are strings
that help you determine their length.

After starting PerlClip, it asks for a
pattern. To generate a counterstring twelve
characters long, I type counterstring 12:

Pattern:
counterstring 12
*** Ready to Paste!

Bisection
You may have used the “bisection” or

“binary search” technique to determine a
precise failure point in a system. It’s the
same approach you use when finding a
word in a dictionary, trying a page in
between two endpoints, and then trying
again in successively smaller sections of
the book. PerlClip supports bisection
with counterstrings using the “u”
and “d” commands, which make the
counterstring longer or shorter without
the user’s needing to track the string size
by hand.

Allchars
For creating test data other than

counterstrings, you can feed PerlClip any
Perl code you can conjure up. Whatever
data your code returns will be placed
onto the clipboard. The simplest example
is the built-in $allchars variable,
which you can use like this:

Pattern:
$allchars
*** Ready to Paste!

The $allchars variable contains all

That’s all there is to it.
The string is now in my
clipboard. All I have to do
is paste it into the applica-
tion I’m testing. This is the
string that is created:

*3*5*7*9*12*

This curious-looking
string is assembled using as-
terisks and numbers indi-
cating the character posi-
tion of the asterisk to the
right of each number. When
I paste this string into the
input field and see 12* at
the end of the string, I
know that all twelve char-
acters were successfully pasted. It’s impor-
tant to count from the last asterisk, so if
the string looks like *3*5*7*9*12, I start
counting at the asterisk after the nine and
count 9, 10, 11 to the end of the string for
a total size of eleven characters.

Now, it’s time to try a longer string to
determine the actual limits of the input
field. So I go back to PerlClip and ask
for ten thousand characters using the
counterstring 10000 command. When I
paste that into my target field in the
application and scroll all the way to the
right end of the field I see Figure 1.

I can see that the last asterisk is at
character number ninety-nine. I count
over one more character to the end of the
string and find its length is one hundred.
All of the characters after the first hundred
were truncated, so now I know exactly
how many characters are accepted in
this field. I can compare this with the
specifications and user documentation, if
any. When I try this same test on the Mac
OS version of the application, I find that
I can’t paste any part of a string that’s
longer than a hundred characters, which
prompts me to explore whether this is
standard behavior on Mac OS.

Figure 1: Using a counterstring to test the Tag Line
feature in the Windows version of my client’s application

Figure 2: Pasting characters you didn’t even know how
to type

Tool Look

character codes between one and 255.
You can use it to make sure that your
application processes all input characters
correctly, not only the traditional ASCII
characters but also the codes higher than
127 that include non-English characters
and other symbols.

Since $allchars generates 255 char-
acters, I had a bit of trouble using it for a
field that only allowed one hundred charac-
ters. When I paste the generated string, only
the first hundred characters are used; the
remaining characters are truncated. To test
all of the characters in the set, I used the Perl
function substr, which selects a substring:

Pattern:
substr($allchars,100,100)
*** Ready to Paste!

This extracted one hundred characters
from the $allchars string, beginning at
the one-hundredth character. I followed this
selection with substr($allchars,200),
which gave me the last chunk of the
string. By using three substrings, I
covered all the characters in three passes
and found two bugs in the process—bugs
that would have been missed had I only
tried the first one hundred characters.
(See Figure 2.)

Text Files
The textfile command allows you to

load a file from a disk and place the
contents onto the clipboard. It works best
when you have an easy-to-type path to
the file on the disk; for example, if your
data is your current working directory,
you can type the filename without a
directory path.

System Requirements
You can download PerlClip from

www.satisfice.com/tools.shtml.

PerlClip only accepts single-line
commands. When I need to do something
more elaborate, it may be easier to just
write a Perl script from scratch.

The clipboard can’t handle massively
large strings of test data very well. A
megabyte is usually fine. Ten megabytes
or more might bring your system to a
standstill. Also, it takes some extra work
to get the generated data written to a file.
That would be a nice addition to PerlClip.

The u and d bisection commands
aren’t very forgiving—if I type the wrong
one, it’s difficult to recover without some
head scratching or starting over at the
beginning. Also, bisection isn’t supported
for test data other than counterstrings.

Some people may be put off by the
command line interface. It wouldn’t
be difficult to build a simple GUI on top
of PerlClip.

To use anything beyond counterstrings
and $allchars, you need a bit of Perl
programming knowledge.

Summing It Up
As simple as the counterstrings concept

is, I think it is one of the most interesting
testing innovations I’ve seen in awhile.
You can tell where I’ve been testing
because you’ll see counterstrings scattered
all over the application. Adding the full
power of Perl opens up an incredible
range of possibilities for creating test data.

The PerlClip interface isn’t well
refined, but it gets the job done. Because
it’s open source, I can change the code
myself if I feel compelled to improve it. {end}

Danny R. Faught (that’s *3*5* *. 2*4*6*
in counterstrings) is an independent
software testing consultant based in Fort
Worth, Texas and a regular contributor
on StickyMinds.com. Visit his Web site
at www.tejasconsulting.com or contact
him at faught@tejasconsulting.com.
Thanks to James Bach for his help with this article.

PerlClip is an open source tool,
licensed under the GNU Public License.
PerlClip currently runs on Windows and
Mac OS X. It is available both as a
Windows binary and as a script. If you
run the perlclip.exe binary file on
Windows, you don’t need to have the Perl
interpreter installed, so you can just
install the one file on your test system and
then you’re ready to go. If you’re using
Mac OS X, use the perlclip.pl script. A
suitable Perl interpreter was already
available as part of every Mac OS X
installation I’ve tried. At a terminal prompt,
type perl perlclip.pl to start PerlClip.

If you’re a Perl programmer, you can
modify the perlclip.pl program. To run it
on Windows, you’ll need to install the Perl
interpreter and the Win32::Clipboard
module. ActiveState.com is the most
popular place to get Perl for Windows.
Use ActiveState’s “ppm” tool to install
modules after you have Perl installed.

Limitations
As nifty as it is, PerlClip has a few

weaknesses. When I want to rapidly try
different data lengths, “counterstring” is
a long word to type. If I’m repeating it in
the same PerlClip session, I usually can
use the up arrow to edit a previously
entered command and avoid typing it all
again. But on Mac OS and often on the
Cygwin shell on Windows, command line
editing doesn’t work. PerlClip relies on
the command line editing features built in
to MS-DOS.

Sometimes it’s awkward for me to
switch from my normal shell interface to
PerlClip’s command line and back. I find
myself wishing for the ability to enter
a command at the same time I invoke
PerlClip. Then I could go right back to
working in my shell. This feature does
not yet exist.

www.StickyMinds.com SEPTEMBER 2005 BETTER SOFTWARE 47

Sticky
Notes

For more on the following topics, go to
www.StickyMinds.com/bettersoftware

� References
Tell us what you like—and don't like—about this or any other issue of Better Software.
Email your comments to editors@bettersoftware.com.

