
 www.TechWell.com MARCH/APRIL 2014 BETTER SOFTWARE 19

A
gile methodologies are approaches to managing
software development based on short-term, itera-
tive, and incremental deliveries, enabling contin-
uous feedback and flexible response to change.

Stemming from a rapidly evolving business environment
that demands faster product improvements and modifications,
the agile methodology promotes the organizational qualities of
speed, responsiveness, and adaptability throughout the entire
application management process, from defining product re-
quirements to coding, testing, and, finally, release management.

This article explains why agile development cannot be im-
plemented effectively without unit testing—and especially au-
tomated unit testing.

The Importance of Code Quality
Developers have known for decades that the further into a

project timeline a bug gets discovered from its insertion point,
the more costly it is to fix. When a developer finds a bug, it can
sometimes take minutes to fix. If it slips through testing and
finds its way to the customer, figure 1 shows that mitigation
can be exponentially more expensive to fix. [1]

 Correcting quality issues can take months of rework, cost
millions of dollars, or, if done too late, may even cost lives.
Take, for example, the first launch of the Ariane 5 rocket in
1996. Its flight abruptly terminated just thirty-seven seconds
after liftoff, taking with it hundreds of millions of dollars in
invested effort. Also think of Toyota recalling four hundred
thousand vehicles because of a bug in the brake control system,
costing an estimated three billion dollars.

While we can’t eliminate all bugs, we can fight them by
baking quality into the code. There are many ways to define
code quality depending on the perspective of the customer or
the developer.

The customer expects working software. Customers do
not care how the code is written—they just need the software

to work. When developers talk about code quality, they talk
about code that is easy to maintain, easy to read, and risk-ad-
verse to change. Each perspective takes the cost of bugs into
consideration. The customer knows that for each bug, he’ll
lose precious business hours or days. The developer knows that
each returning bug means considerable time spent fixing it in-
stead of working on new features.

Agile methodologies take working software and combine it
with early feedback. For example, early releases can get user
feedback about how well the software operates. To give the
developers confidence that their code works, unit testing gives
the fastest available quality feedback.

The earlier defects are found, the cheaper they are to fix.
As agile methodologies encourage high code quality, the team
should run lots of unit tests. Similarly, automated tests give the
developer early feedback on the quality of the software in a
repeatable fashion prior to release.

What Is Unit Testing?
Unit testing is a methodology where individual units of soft-

ware, associated data, and usage procedures are tested to de-
termine whether they operate correctly. The unit is usually a
small piece of code—for example, a single function. The unit
test is a short function that tests the behavior of the unit that
produces a pass/fail result. This is achieved by performing the
tested function on a known value with a single correct result.
Unit tests often use mock objects to simulate the behavior of
dependencies in a predictable way.

The main purpose of unit testing is to allow developers to
identify as many problems as possible at the development stage
and to do it in an automated, repeatable fashion that can be
applied for every code change.

This makes developers directly responsible for producing
working code, even before it reaches the quality assurance
team.

Figure 1: Example of the cost of defect correction during a software project's development lifecycle

http://www.TechWell.com

20 BETTER SOFTWARE MARCH/APRIL 2014 www.TechWell.com

Click here to read more at StickyMinds.com.
n	 References

What Does Unit Testing Have to Do with
Agile Development?

I think the two are closely linked. In fact, I believe you can’t
be truly agile without implementing automated unit testing as
an integral part of the development process. Automated unit
testing has several benefits that align closely with agile develop-
ment principles.

The central benefit of unit testing is that it produces
working code faster and with fewer bugs. The ability to au-
tomate tests and catch bugs at the development stage reduces
a huge amount of overhead that is otherwise spent on releases
that are immediately rejected by QA due to basic functional-
ities being broken. Unit testing increases the chances of a new
feature working correctly upon first delivery, as it becomes the
developer’s responsibility to verify that he is delivering working
code.

Another reason that unit tests cut down on development
time is that their fine resolution allows them to pinpoint pre-
cisely the location of a problem. A failed unit test can direct
the developer to the exact location of the problem in the code,
allowing him to quickly resolve it. This minimizes or even
eliminates the time that would otherwise be spent locating the
problem.

Unit testing may not be able to catch all bugs, but it is highly
effective in catching regression bugs that are defects that break
existing functionality. These bugs hamper progress and waste
valuable development and QA resources as code is sent back
and forth between the two departments, delaying new versions
of existing products and new product releases. Without auto-
mated testing, it is virtually impossible to detect bugs during
the development phase. This causes sprints to become bogged
down as developers need to spend more and more time fixing
regression bugs in order to keep producing working software. It
becomes impossible to maintain a steady and predictable soft-
ware delivery schedule while also maintaining quality. When a
release date draws near and the product is not working, panic
sets in, software is released without enough time to test it, and
more bugs are introduced, creating a vicious cycle.

Code that is not properly maintained very quickly becomes
legacy code that developers either refuse to change or insist on
rewriting themselves. To keep code alive, you need to be able
to change it and be confident that your changes won’t break
anything. Unit testing promotes this confidence. Without it,
you end up either refusing to change older code or investing
large amounts of time rewriting it every so often. In order to
respond quickly to change, you need to be able to modify all
parts of your code quickly and confidently. Some tools even
allow you to develop unit tests for older code without having
to change the code itself.

Agility through Automation
The platform for unit testing is implicit, and we usually

omit the word automated before it. In reality, unit testing is
a collection of processes, skills, and tools that support agility.
For example, writing the tests is an actual skill. I look at tests
I wrote five years ago and think, “How would anyone let me

write this?” (I’m sure I’ll feel the same in five more years about
what I’m writing now.)

In addition, using isolation and mock objects correctly is a
capability that improves over time. Refactoring of the tested
code or changing code design can fill up a three-day workshop,
and much like design, it can be improved and lead to maintain-
able test design.

When we improve our skills, we can move more quickly
and change directions as we go with agility. But without au-
tomation, we won’t be able to use our skills effectively in a
repeatable fashion.

Automation is the foundation that gives the power to get
quick feedback from running tests. It gives us the ability to
cover more code and know we didn’t break anything. And it
gives us the independence to change our design when we need
to without risk and to mold the software the way we want it.

In the end, the Agile Manifesto favors working software.
Automated unit tests bring us close to that point quicker than
other processes.

Conclusion
The benefits of unit testing are closely aligned with the

principles of agile software development. Unit testing allows
you to make code changes while remaining confident that they
will not break existing functionality and that the major part
of new functionality will work on first delivery. This enables
frequent, timely delivery of working software, which in turn
enables swift response to changes in requirements. Automated
unit testing also promotes a transparent view into the code’s
health by producing reports that allow anyone to see which
problems occur and their precise locations in the code. Further,
automated unit testing reduces the number of regression bugs,
preventing development sprints from becoming bogged down
and enabling developers to maintain a constant, sustainable
work pace.

Together with the agile methodology, an integrated, auto-
mated unit testing tool that works well within your program-
ming environment is a crucial necessity for managing modern
software development. {end}

gilz@typemock.com

http://www.TechWell.com
http://www.stickyminds.com/sticky-note/references-166
mailto:gilz@typemock.com

