
10/10/18

1

Automation & Testing Saved a
Project from the Brink of
Collapse

Jonathan Solórzano-Hamilton
Sr. Site Reliability Engineer

Procore Tecnologies

1

About Me

▶ Senior Site Reliability Engineer at
Procore since June

▶  7 years in DevOps @ UCLA
▶  3 years @ Stanford University
▶ ~5 years assorted consulting,

internships
▶ Studied & worked as an experimental

physicist

2

10/10/18

2

About Procore

What we are
▶  SaaS for the $10 trillion

construction market
▶  Over 1,200 employees
▶  11 locations globally, HQ in

Carpinteria

How we work
▶  Rails + PostgreSQL, mobile native, Elixir,

JS, C, …
▶  CI with 100’s of production deploys per day

across ~2000 servers
▶  R&D supported by robust QA organization
▶  Currently hiring QA at all levels: Senior

Manager to Entry-level

Conceptual Overview

10/10/18

3

Contents
▶ Concepts overview
▶ My failing project
▶ “Virtuous cycle” approach
▶ Principles and practices
▶ Bringing this back to the office

Software: Architectre & Design

10/10/18

4

Software Architecture

▶ High-level system structure
▶ Reflects desired characteristics
▶ Constrains the outcomes

▶  How will we store data?

▶  How to distribute the system?

▶  Server/client architecture?

▶  Monolith or microservices?

Software Design

▶ Break structure into components
▶ Decides specific implementations
▶ Constructs the outputs

▶  How will we break down the project?

▶  How to distribute the work?

▶  Class structure, inheritance models, composition?

10/10/18

5

S.O.L.I.D.

▶ Some of Robert C. Martin’s most important
design principles

▶ Only general guidelines toward better code
▶ High-level overview from a release

readiness perspective

Single Responsibility

▶ Break code down to isolate risk of changes

▶ If you only do one thing, you only have to

test one thing

10

10/10/18

6

Open to Extension, Closed to
Modification

▶ Expose only the public API

▶ Once your code passes tests, it will pass

tests everywhere

11

Liskov Substitution
▶ Children must live by their parents’ rules

▶ Sane polymorphism: favor composition over

inheritance
▶ You can have more and smaller tests that are

less likely to break

12

10/10/18

7

Interface Segregation

▶ Separate code by many small interfaces

▶ Your gateway to tests and dependency

inversion

13

Dependency Inversion

▶ Classes should describe what they need,
but not how they get it

▶ Avoiding dependency hell, “surprise”
calls

▶ You can test microservices!
14

10/10/18

8

Case Study: A Collapsing Project

 15

Our Story

▶ Waterfall project 5 years in the making
▶ Complex system (150k+ LOC)
▶ Bug introduction rate >> bug fix rate

16

10/10/18

9

What did we have

▶ 0% test coverage
▶ 0 documentation
▶ 0 original devs

▶ 6 months left until go-live

17

How did we get there

▶ Unstable management
▶ Constant time pressure

▶ Uncoordinated effort
▶ Accidental architecture

▶ Bad design

Out-of-control Technical Debt

10/10/18

10

Uncoordinated Effort

▶ No code review
▶ No feedback mechanisms
▶ Mistrust and “blame game” between teams
▶ “Defensive coding” and “defensive

requirements”

Accidental Architecture

▶ Over-architected system
▶ Arbitrary SOA (“micro-services”)
▶ Reinventing wheels
▶ Persistence by convenience

10/10/18

11

Design? What design?

▶ Ad-hoc implementations
▶ Copy-and-paste
▶ Ignoring language features
▶ Outdated framework

Virtuous Helix of Quality

22

10/10/18

12

Discover
opportunities

Analyze
architecture

Refactor design

Automate results

23

Discover

▶ Next thing that breaks
▶ Hardest code to understand
▶ Follow your nose

▶ Slowest parts of dev workflow

24

10/10/18

13

Discovery: Case Study

▶ Local dev setup took 3 days
▶ Mock service dependencies

▶ Tests (manual) took 15+ min to boot
▶ Application bootstrap code
▶ Test harnesses & test code

Discovery: Case Study, cont.

▶ Reproduction took 100+ steps
▶ Persistence and state logic

▶ System required millisecond time sync
▶ Consistency architecture problem
▶ (15ms tick granularity)

10/10/18

14

Analyze

▶ Do we have the layers we need?
▶ Do we need the layers we have?
▶ Have we done this twice?

27

Analyze: Case Study

▶ Do we have the layers we need?
▶ Cramming everything into one layer
▶ Staying within team’s own sandbox
▶ Abusing (persistence) functionality out of

comfort

10/10/18

15

Analyze: Case Study, cont.

▶ Do we need the layers we have?
▶ Replace it with 3pp: logger
▶ Remove implementation: expression serializer
▶ Remove the feature: edge case analysis +

scope negotiation

Analyze: Case Study, cont.

▶ Have we done this twice?
▶ Over-complex code led to competing implementations
▶ Teams in poor communication refused to adopt each

others’ work

10/10/18

16

Refactor

▶ SOLID by increments
▶ Well-known code patterns to the rescue

Refactor: Case Study

▶ Is this in the right place?
▶ Extract a method or class
▶ Migrate up or down a layer
▶ Define a new module or library

32

10/10/18

17

Refactor: Case Study, cont.

▶ How can we rip this out?
▶ Interfaces over implementations
▶ Preserving a legacy option

Refactor: Case Study, cont.

▶ How can we tease this apart?
▶ Adapter classes
▶ Aspect-oriented decorators
▶ “Poor Man’s DI”

▶ Software design patterns

10/10/18

18

Automate

▶ Drive your product into release readiness
▶ Eliminate drains on your team time
▶ Iterate these improvements

 35

Automation: Case Study

▶ Slow development setup
▶ Development context switch to mocks

▶ Painful manual testing
▶ Implement local unit test framework

10/10/18

19

Automation: Case Study, cont.

▶ Testing requires prod data
▶ Extract and obfuscate fixtures

▶ Going beyond local
▶ Jenkins, CircleCI, etc. into SC

Principles and Practices

10/10/18

20

Introduce a test with
every change

Principles of Maintainability

▶ Many, small, immutable components each to
its task

▶ Composite into a complete API
▶ Coherent to another person?
▶ Shared “grammar” is a shortcut to

understanding

10/10/18

21

Maintainable Patterns

Architectures
▶  Monolithic vs. micro-

services
▶  N-tier/layered architecture
▶  Event-driven system
▶  MVC web application

Designs
▶  SOLID Principles
▶  Gang of Four Design

Patterns
▶  Language-specific trends

41
BBOM

Naming for Maintenance

▶ Avoid Hungarian or “typed” notation
▶ Prefer long, descriptive names
▶ Apply tenfold in the test code

10/10/18

22

How SOLID helps with testing

▶ It’s many small immutable pieces
▶ Their contracts, rather than their

implementations, are described
▶ Pull out one small piece at a time

43

Essential frameworks for
maintainability

▶ Unit testing
▶ Mocking and stubbing

10/10/18

23

Non-essential, but very useful,
frameworks

▶ Dependency injection
▶ Static analysis

▶ Code coverage & “technical debt”
▶ Security analysis

▶ Other testing
▶ UI testing
▶ Performance & load testing

▶ Etc.

Bringing Change to your
Organization

10/10/18

24

From the bottom, up

Automation

Tooling

Processes

Learning

Openness

Openness to Change

Small
Wins

Eager
participants

Invite
Criticism

Lead by
example

 48

10/10/18

25

Learning

Shared Objectives

Design
Priorities

Constraints

Failures

Processes

Find pain
points

Delegate
fixes

Verify
outcomes

Continuously
Improve

10/10/18

26

Tooling

Start with
Known
Process

Pain Points

Team History Leverage

Team
Weaknesses Augment

Automation

Slowest
Workflow

Automate
Locally

Review
Results

Distribute to
Team

10/10/18

27

Q&A

Contact Information

@jhsolor
in/peachpie
@peachpie
jhsolor

@ProcoreTech
@ProcoreJobs
procore.com/jobs/openings

10/10/18

28

Further Reading

Articles
▶  https://martinfowler.com/bliki/CodeSmell.html

▶  http://agilemanifesto.org/

▶  https://en.wikipedia.org/wiki/SOLID

▶  https://en.wikipedia.org/wiki/Design_Patterns -
Gang of Four (GoF)

Books
▶  Erich Gamma, Richard Helm, Ralph

Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-
Oriented Software, 1994.

▶  Martin Fowler. Patterns of Enterprise
Application Architecture, 2002.

▶  Gary Hall. Adaptive Code via C#: Agile
Coding with design patterns and SOLID
Principles, 2014.

▶  Roy Osherove. The Art of Unit Testing:
with examples in C#, 2013.

