
Reduce Wait Time with Simulation +
Test Data Management

How to approach test data in an agile world

Data is the key to business

• So many data combinations
(So many Keys)

• 9^5 combinations = 59,049

• for a standard house key

• Disnyland receives 44,000\day

• Data is complicated
(I need all the keys)

• August, Baldwin, Kwikset, Masterlock,
Medco, Schlage, Yale

• 413,343 combinations (Omaha = 411,630

• Data is Dangerous

• (GDPR, PII, …)

How do you test a lock

Dev & Testing activities that need test data

Experimentation • Playing with a new idea or capability

Unit • GenerateData(complex) to test this.object

Functional Testing
• Large data sets for per mentation and non-nominal testing

that still “Make Sense”

Integration Testing • Introduce corrupt or unexpected data

Regression Testing • Does todays data break the system

Non- Functional
Testing -

Performance Testing

• Data burning

• Shift left performance testing

The increasing complexity of your data requirements

The Cost of Data Complexity

• Up to 60% of application development and testing time is devoted to data-
related tasks

• Many project overruns, 46% (cost) and 71% (schedule), due to inefficiencies in
test data provisioning

• 20% of average SDLC lost waiting for data

• System functionalities are not adequately tested, during continuous
enhancements, due to required test data not being available or created

• Leads to defects in production

3x Traditional Approaches to TDM

1. Clone/Copy the production database

2. Subset/Sample the production database

3. Generate/Synthesize data

1) Clone/Copy the production database

• Pros:

• Relatively simple to implement

• Cons:

• Expensive in terms of hardware, license and support costs

• Time-consuming: Increases the time required to run test cases due to large data volumes

• Not agile: Developers, testers and QA staff can’t refresh the test data

• Inefficient: Developers and testers can’t create targeted test data sets for specific test cases or
validate data after test runs

• Not scalable across multiple data sources or applications

• Risky: data might be compromised or misused

• DO NOT FORGET TO MASK!!!

2) Subset/Sample the production database

• Pros:

• Quick-win

• Less expensive compared to cloning or generating synthetic test data

• Con:

• Difficult to build a subset which maintains referential integrity

• Skill-intensive: Without an automated solution, requires highly skilled resources to ensure
referential integrity and protect sensitive data

• Typically only 20-30% of functional coverage in production data

• Dev/test spend 50-70% of time looking for useful data (20% of the SDLC cost)

• Requires underlying database infrastructure

• DO NOT FORGET TO MASK!!!

3) Generate/Synthesize data

• Pros:

• 100% functional coverage without the need to mask data

• Does not contain sensitive/real data

• Model data relationships + test requirements = complete set of data

• Cons:

• Needs knowledge to ‘design’/model the data

• Requires underlying database infrastructure

• Resource-intensive: Requires DBA and Domain experts to understand the data relationships

• Tedious: Must intentionally include errors and set boundary conditions

• Challenging: Doesn’t always reflect the integrity of the original data set or retain the proper
context

Test Data Modeling

• Clone/Copy the production database

• Expensive and time consuming

• Subset/Sample the production database

• Difficult to build a subset which maintains referential integrity

• Generate/Synthesize data

• Requires DBA and domain experts to understand the data
relationships

3x Traditional Approaches to TDM

Database

TDM

… but there is a problem with the traditional approach

1. Multiple teams using the same test database

2. TDM solution takes time and resources

3. Teams not respecting data integrity or other
team’s test data records

4. Regression tests consistently failing.

Reliance on a shared database

Data
Conflicts

“Takes hours to determine that it was due to
data changes”.

“Real problems are getting lost in the noise”

Option #4 … Service Virtualization

delivers a
simulated dev / test environment
allowing an organization to test

anytime or anywhere

Application
Under Test

Increasing complexity of testing requirements

Web

Application
Under Test

Test
Automation

Omni/Multi-Channel Test Automation

WebWeb

Application
Under Test

Test
Automation

Omni/Multi-Channel Test Automation

Unavailable or
fee-based 3rd

party systems

Uncontrollable
behavior

“Agile
Roadblock”

Unable to ‘shift-
left’ performance

testing

WebWeb

Application
Under Test

Test
Automation

Service
Virtualization

Total control of the Test Environment

500 Internal
Server Error

Malformed
Response

Expose a
security

Exception

Test the
boundaries of
performance

SLAs

WebWeb

Test Data

Environment based approach to testing

Check-in
Code

Analysis
Unit Test

Deploy to
Stage

Functional
Test

Performance
Test

Penetration
Test

Deploy to
Production

Enabling Continuous Quality in the CI/CD Pipeline

Check-in + Build

Combining tests, virtualize assets, and data into disposable test
environments to enable complete test coverage

Service Virtualization: Capturing current behavior

Application
Under Test

2 Capture

4 Deploy

3 Create

Application

Database

Service

QA and Test

Performance Test
Engineer

Mainframe

Virtual Service
Repository

Define Monitors1

Development

UFT

LoadRunner

Application
Under Test

Application

Database

Service

Mainframe

Virtual Service
Repository

DevOps Platform

5 Manage

6 Consume

QA and Test

Performance Test
Engineer

Development

Service Virtualization: Capturing current behavior

QC/ALM

Rational

Service Virtualization + Test Data Management

Database

4) Service Virtualization

• Pros

• Does not require underlying database infrastructure

• Isolated test environments

• Easily cover corner cases

• Ease to share

• Eliminates complexity of underlying database schema

• Capture just the data you need to … and dynamically mask

• Cons

• It’s not a real database … virtualizing of INSERT/UPDATE scenarios increases complexity

Combining Service Virtualization with traditional TDM

Service
Virtualization

Test Data
Management

Simulate database
interactions for ”SELECT”

operations and
performance/corner-case

scenarios

Subset and Mask existing
data and leverage database

infrastructure for
“INSERT”/”UPDATE”

operations

Model the data relationships
and generate for expanded

coverage and disposable test
data

Test Data Lifecycle

Management

• Capture, Navigate, Edit, Snapshot

Masking

• Ensuring existing data is safe for use in testing environments

Model/Generation

• Extend and reshape the data you have for additional value

Sub-setting

• Carving out specific data sets from the now, abundance of data available

Make reusable data a reality with simple and intuitive workflows

Capturing and Managing Test Data

• What are my test data requirements?

• What Data can I capture

• Database extraction

• In use (Over the wire)

• Post Capture

• Masking, Subsetting

• What tools exist

• Wireshark, Fiddler, CA LISA, Parasoft Virtualize, HPSV,
Charles Proxy, APM tools (Dynatrace, Appdynamics)

How do you get your data into the testing infrastructure?

Masking Sensitive Data

• Can we use the data we have?

• What can we do to remediate our risk

• Masking

• Ensuring existing data is safe for
use in testing environments

• What tools exist

• Scripting, Arx, Jailer, Metadata Anonymization Toolkit, Talend,
DatProf, CA TDM , Parasoft Virtualize, HPE Security
IBM Optim, Informatica, Oracle Data Masking, MasterCraft

Once we get Data into the testing Infrastructure, How much risk have we introduced

Don’t forget to mask the data

• Protects against unintended misuse

• Privacy concerns, sensitive corporate and regularity requirements (HIPPA, PCI, GDPR)

• It’s not as a simple “XXXX” or scrambling values

• 354-15-1400 > XXX-XX-XXXX

• 354-15-1400 > 004-15-1453

• Need to consider

• Validity and format of the data

• Multiple copies of the same data need to be masked the same way

• How is the masked data is used

• Related or derived values; 354-15-1400 vs 1400 (i.e. last 4 digits)

• Manipulated/changing data cannot be masked if validation is required

Expanding Data Coverage

• Stagnate, obsolete, burned

• Limited data reusability due to uniqueness constraints

• Repurposing data

• Model/ Generation

• Extend and reshape the data you
have for additional value

• Seed data

• What tools exist

• Mockaroo, Data Factory, Spawner, Databene Benerator, The Data Generator,
Toad, Open ModelSphere, Parasoft Virtualize, DatProf, IBM Infosphere, CA TDM,
NORMA, DB Tools (SQL Server Management, MySQL, Erwin)

How useful is your data

Finding the Right Data

• Pull select data from a library to satisfy your unique testing requirements

• A good problem to have

• Sub-setting

• Carving out specific data sets from the
now, abundance of data available

• What tools exist

• Db Tools, Scripting, DatProf, CA TDM,
Parasoft Virtualize, Delphix, HPE Security, IBM Optim,
Informatica, Oracle Data Masking, MasterCraft

How do you filter the data you have amassed

Test Data Management Lifecycle

Capture
Infer

Constraints
Define

Relationships
Mask Generate Snapshot

Deploy

TestDestroy

http://qatesting.rsystems.com/quality-engineering/

http://qatesting.rsystems.com/quality-engineering/

How Service Virtualization Helps

• Simplifies the TDM problem

• Reduces back-end data requirements

• Data-Graphs vs. Relational-Data

• Scalable, Fast, Efficient dynamic storage

• Removes complex table/key relationships

• Link Service Virtualization and Automated Testing together to close the loop

• Link the data on the front end to the back end

• More predictable, controllable data scenarios

• Note: Any data validation should be to validate the AUT not the back-end behaviour. Data validation of
shared data will be different in system test.

SV is the best data management technique for Agile

Conclusions

• Combination of Service Virtualization and TDM offers a simplified approach to data management

• Capture > Mask > Model > Generate > Subset

• Don’t forget to Mask for privacy compliance

• Utilize Service Virtualization to ‘shift left’ integration testing

• Share data between Test tools and Service Virtualization layer to fully test the AUT (not constrained by the back-end system)

• Utilize simple data storage rather than ‘full schemas’ for rapid/agile prototyping

• Create different data sets for different purposes

• Different use-cases scenarios (positive/negative)

• Different types of testing (e.g. functional vs. performance)

“Getting the right keys”

Want more information?
Chris Colosimo

chris.colosimo@parasoft.com

Visit our booth # 16
36

mailto:chris.colosimo@parasoft.com

