
	

	

	

AD6	

DevOps	
 Practices	

10:30	
 AM	

	

	

	

	

	

AD6	
 -­‐	
 DevOpsing	
 Your	
 Greenfield:	

Cultivating	
 New	
 Growth	

	

Presented	
 by:	
 	

	

	

Richard	
 Mills	

	
 	
 Coveros	

	

Brought	
 to	
 you	
 by:	
 	

	
 	

	

	

	

	

888-­‐-­‐-­‐268-­‐-­‐-­‐8770	
 ·∙·∙	
 904-­‐-­‐-­‐278-­‐-­‐-­‐0524	
 -­‐	
 info@techwell.com	
 -­‐	
 https://agiledevopswest.techwell.com/	

	

	

Richard	
 Mills	

	

Richard	
 Mills	
 has	
 more	
 than	
 25	
 years	
 of	
 experience	
 in	
 software	
 engineering	
 with	
 a	

concentration	
 on	
 pragmatic	
 software	
 process	
 and	
 tools.	
 Rich	
 has	
 a	
 specific	
 focus	
 in	
 Agile	

development	
 methods	
 and	
 is	
 passionate	
 about	
 DevOps,	
 Continuous	
 Integration,	
 and	

Continuous	
 Delivery.	
 As	
 the	
 Solution	
 Lead	
 for	
 DevOps	
 at	
 Coveros,	
 Rich	
 is	
 dedicated	
 to	

helping	
 customers	
 build	
 software	
 better,	
 faster	
 and	
 more	
 securely	
 by	
 coaching	
 and	

mentoring	
 in	
 Agile	
 development	
 methodologies,	
 automating	
 software	
 delivery	
 (builds,	

tests,	
 and	
 deployment)	
 and	
 integrating	
 strong	
 security	
 measures	
 into	
 development	

techniques.	
 He	
 has	
 spent	
 his	
 career	
 working	
 in	
 the	
 areas	
 of	
 static	
 and	
 dynamic	
 software	

analysis	
 tools,	
 configuration	
 management,	
 and	
 continuous	
 integration.	
 Rich	
 currently	

works	
 as	
 a	
 Technical	
 Manager	
 with	
 Coveros	
 and	
 has	
 been	
 with	
 the	
 company	
 since	
 2010,	

spending	
 most	
 of	
 his	
 time	
 engaged	
 with	
 customers.	
 He	
 is	
 an	
 alumnus	
 of	
 Bucknell	

University	
 where	
 he	
 earned	
 a	
 BSEG	
 in	
 Computer	
 Engineering.	

© COPYRIGHT 2019 COVEROS, INC. ALL RIGHTS RESERVED. 1

DevOpsing Your Greenfield:
Cultivating New Growth

Richard Mills
DevOps Solution Architect, Coveros Inc.

rich.mills@coveros.com
@armillz

© COPYRIGHT 2019 COVEROS, INC. ALL RIGHTS RESERVED. 2

Who is this guy?

•Me: Mad-Software-Developer turned Mad-Software-Engineer
turned DevOps-Solution-Architect. Pragmatist. Particular
focus on tools and automation. CI, CD, DevOps … what’s
next?
• PS: Thanks for inventing the term “DevOps” to describe what I like

to do.

•Pays my bills: Coveros helps organizations accelerate the
delivery of secure, reliable software using agile methods.
• Agile transformations, development, and testing
• DevOps implementations
• Training courses in Agile, DevOps, Application Security

•Keeps me intrigued: SecureCI
• Open-source DevOps product
• Integrated CI/CD stack with security flavor

© COPYRIGHT 2019 COVEROS, INC. ALL RIGHTS RESERVED. 3

Why is he here?

•Open your mind about most important aspects of "new" DevOps

• Share some of my experiences (and failures)

•Give you a reference to walk away with

•NOT: Explain fundamentals of DevOps (or Agile)

•NOT: Sell you on DevOps (or Agile)

© COPYRIGHT 2019 COVEROS, INC. ALL RIGHTS RESERVED. 4

Somewhere in our DevOps dreams...

I want to do some DevOps and Agile on our
important new project!

Great. How about this? Let’s BE Agile and
adopt a DevOps approach to structuring our

teams, designing our architecture, and
leveraging automation to rapidly deliver value

to our customers?

Right. That’s what I said.

Sigh

© COPYRIGHT 2019 COVEROS, INC. ALL RIGHTS RESERVED. 5

Typical DevOps Transformation

• Frequently a fire-fighting effort

• Find the most important thing, improve it

•You have something concrete to start
with, so you just start fixing it.

© COPYRIGHT 2019 COVEROS, INC. ALL RIGHTS RESERVED. 6

Greenfield DevOps

•Wide open options

•No obvious path

•Nothing to grab onto yet, so nothing
to "fix" and no clear direction to
follow

It can seem like an overwhelming
boulder, at times.

Good news: no baggage

© COPYRIGHT 2019 COVEROS, INC. ALL RIGHTS RESERVED. 7

You have ONE job

•Don't blow it

•You have a clean slate

•Don’t create your own dumpster fire

We want fire proofing, not fire starting.

© COPYRIGHT 2019 COVEROS, INC. ALL RIGHTS RESERVED. 8

General Agenda

•DevOps baseline – picking the seeds

•Greenfield approach – planting the seeds

• Important aspects for cultivating growth
• Organization structure and mission
• Infrastructure and tools
• Pipeline design with delivery and branching model
• Integrating with your architecture
• Testing and quality analysis

Each of these could be multi-hour topics.

© COPYRIGHT 2019 COVEROS, INC. ALL RIGHTS RESERVED. 9

DevOps – picking the seeds

© COPYRIGHT 2019 COVEROS, INC. ALL RIGHTS RESERVED. 10

The Many Things of DevOps

Notice that not many of these are PURELY the responsibility of one person or even team

© COPYRIGHT 2019 COVEROS, INC. ALL RIGHTS RESERVED. 11

Industry Views on DevOps

“DevOps (a portmanteau of "development" and "operations") is a software
development method that stresses communication, collaboration and integration
between software developers and Information Technology (IT) professionals.” –
Wikipedia

The Three Ways - made popular by Gene Kim, et. al. in The Phoenix Project
• Rapid flow to deliver value (left to right)
• Rapid feedback (right to left)
• Continuous experimentation and learning

C.A.L.M.S. - developed by John Willis and Damon Edwards and added to by Jez
Humble to describe DevOps (Culture, Automation, Lean, Metrics, Sharing)

Point: DevOps is more than just automation and 20 deploys per day

© COPYRIGHT 2019 COVEROS, INC. ALL RIGHTS RESERVED. 12

Ok, But What Do WE Actually Mean by DevOps?

•DevOps is the natural evolution of Agile: how to get working software into the hands of the
people who need it rapidly and reliably
• Who? Developers, Product Owners, ultimately users
• When? Now!

• Seriously … within weeks we can measure delivery with "minutes"

• How? Team structure, processes, automation, tools

•Extension of Agile
• Focus on value delivery
• Common sense
• Enable developers to be creative and do great work

•Work with developers to integrate system architecture with deployment architecture
• Absolutely makes things easier and work better
• Examples: metrics, testing, health, scaling

© COPYRIGHT 2019 COVEROS, INC. ALL RIGHTS RESERVED. 13

Elements for Success

•Three key elements:
• Communication/Team Integration
• Automation of process with tools
• TESTING ← I’ll hammer on this later

© COPYRIGHT 2019 COVEROS, INC. ALL RIGHTS RESERVED. 14

Making It Real

My take:

•Deliver working software through pipeline

• Insert quality gates to break builds

•Use Agile approach and work directly with developers

•Don't be afraid to break things, especially early on

© COPYRIGHT 2019 COVEROS, INC. ALL RIGHTS RESERVED. 15

Why DevOps?

•Why not?

•More importantly: why for YOU?

•Extension of Agile (but doesn't necessarily NEED agile). Agile needs DevOps, but not
necessarily vice-versa.

•Benefits
• Efficient - let computers do what they're good at, quickly
• Consistent - always get the same result, dev to prod
• Repeatable and reliable releases
• Collective ownership

© COPYRIGHT 2019 COVEROS, INC. ALL RIGHTS RESERVED. 16

Greenfield Approach –
Planting the Seeds

© COPYRIGHT 2019 COVEROS, INC. ALL RIGHTS RESERVED. 17

So ... Where do we actually start?

It’s actually pretty easy:
1. Create a team
2. Set up some infrastructure and tools
3. Build a pipeline
4. Establish quality gates
5. Iterate

Ok, It’s a little harder than that...

© COPYRIGHT 2019 COVEROS, INC. ALL RIGHTS RESERVED. 18

Most Important: Iterate!

•Don't solve everything at once (breadth first)

•Don't even solve one thing all the way (depth first)

•Get the most important things functional, then improve over time

• Start left, build toward the right. Most important first.

•Don't paint yourself into a corner, but don't over-engineer
• Wait until you know what you need for things that are easy to rework
• Caveat: beware things that are immensely hard to re-work.

• Start with the simplest thing that could work

Remember: DevOps is about delivering value, not just making things cool.

© COPYRIGHT 2019 COVEROS, INC. ALL RIGHTS RESERVED. 19

Avoid DevOps Anti-Patterns

•Beware the inevitable wall of confusion

•Don’t get stuck doing dumb things “because that’s the
way we’ve always done it.”

© COPYRIGHT 2019 COVEROS, INC. ALL RIGHTS RESERVED. 20

Team structure and mission

© COPYRIGHT 2019 COVEROS, INC. ALL RIGHTS RESERVED. 21

Avoid DevOps Team Anti-Patterns

•Separate silos

•Dev, Ops, DevOps silos

•No Ops

http://web.devopstopologies.com/

© COPYRIGHT 2019 COVEROS, INC. ALL RIGHTS RESERVED. 22

Successful DevOps Organizational Structures

Build the right relationships between the people with shared
success goals.

• Ideal: Cross functional teams with Dev, Ops & QA
• Shared goals and values
• Collaborative
• Unified processes and tooling

•Maybe: DevOps as a service
• Smaller teams/orgs
• Transitional situations

• Sometimes: Embedded Ops
• Suitable for single web-based product

© COPYRIGHT 2019 COVEROS, INC. ALL RIGHTS RESERVED. 23

Horizontal DevOps Guild

•Group of DevOps professionals working together to solve cross-team DevOps problems

•Guild members in-team are focused on team-specific problems

•Dedicated guild members support cross-team needs

•Guild establishes cross-team standards and shared success

• Important: share knowledge across team members

Cross-team function (vs. cross-functional team)

© COPYRIGHT 2019 COVEROS, INC. ALL RIGHTS RESERVED. 24

Example DevOps Guild and Team Structure

Our team organization on a 50-ish person development project

Horizontal Guilds

DevOps Engr

CORE DevOps Lead

Platform Engr

CORE Platform Lead

Platform Engr Security
Security

Security

Performance
Performance

Agile Vertical Team

Scrum master

DevOps Engr

Biz Analyst

Agile Tester

Front End

Full Stack

Agile Vertical Team

Scrum master

DevOps Engr

Biz Analyst

Agile Tester

Front End

Full Stack

Agile Vertical Team

Scrum master

DevOps Engr

Biz Analyst

Agile Tester

Front End

Full Stack

Agile Vertical Team

Scrum master

DevOps Engr

Biz Analyst

Agile Tester

Front End

Full Stack

© COPYRIGHT 2019 COVEROS, INC. ALL RIGHTS RESERVED. 25

Finding the Right DevOps Members

•A good DevOps person ...
• ... Is a Developer
• ... Is a Tester
• ... Knows about system administration
• ... Has strong attention to detail
• ... Has high standards for quality
• ... Knows how to solve problems
• ... Good at making things work

•Has experience and skills with build tools (maven, gradle, npm), test tools (junit, testNG,
Selenium), database programming (sql, no-sql), CI build servers (Jenkins, Travis), operating
systems (Linux, Windows), software installation/configuration (nginx, tomcat, databases), CM
automation tools (chef, puppet, ansible), scripting (python, groovy, ruby), cloud systems
(AWS, Google, Azure), virtualization and containerization (virtualbox, vmware, docker), and
many, many other buzzwords (REST, HTTP, SSL, API, UI, e2e)

© COPYRIGHT 2019 COVEROS, INC. ALL RIGHTS RESERVED. 26

DevOps Charter and Mission

Support Agile development and enable rapid delivery of working, validated software in a
micro-service-based architecture through team collaboration and automation. This
accomplishes the following goals:

• Establish confidence in change
• Use automation to enforce continuous quality assessment throughout the development and delivery

process
• Leverage industry standards to maximize integration of toolsets
• Enable localized feature changes that go through series of quality gates as they move closer to production

The Core DevOps Team is a collection of shared core DevOps architects integrated with a set of
dedicated DevOps engineers assigned to each of the Agile development teams. The DevOps
team is also closely aligned with the Operational Platform team in that the DevOps platform is
based largely on the operational platform for the application.

© COPYRIGHT 2019 COVEROS, INC. ALL RIGHTS RESERVED. 27

DevOps Guild Responsibilities

The Core DevOps team is responsible for the following:
• Maintaining the shared DevOps platform infrastructure (Jenkins, Sonar, Nexus, etc.)
• Establishing standards for build and delivery of application source code
• Providing guidance and support for the application development teams

Additionally, the embedded App Dev DevOps Engineers are responsible for the following:
• Implementing the automation necessary to build, test, and deploy the application in the DevOps

pipeline
• Implementing the build scripts necessary to support local development as well as DevOps pipeline
• Working directly with the developers, testers, and product owners to understand requirements

necessary to build, test, and deploy the application
• Contributing to (and consuming) standards with Core DevOps team
• Participating in daily/weekly cadence of App Dev team
• Participating in daily/weekly cadence of Core DevOps team

© COPYRIGHT 2019 COVEROS, INC. ALL RIGHTS RESERVED. 28

Infrastructure and Tools

© COPYRIGHT 2019 COVEROS, INC. ALL RIGHTS RESERVED. 29

Application Lifecycle Mgmt. SCM/VCS Testing Deployment Cloud/IaaS/PaaS

Communication & ChatOps

Knowledge Sharing

Configuration Mgmt.

Artifact Management

Orchestration & Scheduling

Monitoring & Logging

Database Management

Build

Continuous Integration

Analysis

Tools, tools, and more tools

© COPYRIGHT 2019 COVEROS, INC. ALL RIGHTS RESERVED. 30

Application Lifecycle Mgmt. SCM/VCS Testing Deployment Cloud/IaaS/PaaS

Communication & ChatOps

Knowledge Sharing

Configuration Mgmt.

Artifact Management

Orchestration & Scheduling

Monitoring & Logging

Database Management

Build

Continuous Integration

Analysis

Let’s start with LESS tools

© COPYRIGHT 2019 COVEROS, INC. ALL RIGHTS RESERVED. 31

Infrastructure Platforms

• Infrastructure: Operating Platform
• Server platform - physical, VM, container
• OS configuration
• Middleware installation and configuration (java, nginx, tomcat, database, message queue, etc.)

•DevOps Infrastructure: DevOps Platform
• Build server (Jenkins)
• Quality analysis server (SonarQube)
• Artifact server (Nexus)
• Source control server (Git)
• Test server(s)? (Selenium)
• Target environment for CI/CD builds (see: Operating Platform)

•Developer Infrastructure: local development

© COPYRIGHT 2019 COVEROS, INC. ALL RIGHTS RESERVED. 32

Operating Platform

• VMs – mainstream and the current “normal”
• Choose your OS: Linux, Windows
• Orchestration and CM tools: Chef, Ansible, Puppet, ...
• Pipeline produces installable software
• CM tool install/configure software

• Containers (e.g., Docker) are the new hip
• Choose a smaller OS (RHEL, Alpine, Busybox)
• Kubernetes – “which version” (e.g., Kube vs. OpenShift vs. ...)
• Pipeline produces container images
• Orchestration tool (Kube) deploys and configures

• To the cloud!
• Amazon, Google, Azure ...
• Infrastructure as a Service vs. Platform as a Service vs. completely serverless
• Networking, Virtual Machines, Docker containers
• This is likely to form the basis of your VM’s or containers

© COPYRIGHT 2019 COVEROS, INC. ALL RIGHTS RESERVED. 33

Setting up your Platform

• Start small/easy – get something running for developers to work in

•Automate from the bottom up ← most frequent == most valuable

•Move towards dynamic environments – easily launch new ones

© COPYRIGHT 2019 COVEROS, INC. ALL RIGHTS RESERVED. 34

DevOps Platform

• DevOps Platform - the set of tools and
environments you use
• Start with your operating platform, build

from there

• Jenkins - build and pipeline orchestration
tool
• SonarQube - quality analysis dashboard
•OpenShift & Docker - deployment and

configuration

• Pick some assessment tools:
• JUnit, Jest
• OWASP Dependency Check
• Selenium

• Again, start manually then move to
automation

© COPYRIGHT 2019 COVEROS, INC. ALL RIGHTS RESERVED. 35

Example Platform Architecture

• Ideally, your “operating platform” and “DevOps platform” share a lot of underlying
infrastructure

AWS
Instance

Open Shift Cluster

Pod

AWS
Instance

AWS
Instance

Pod Pod Pod Pod

Micro-Service App Code

PodPod

DevOps Tools

Pod

AWS
Instance

Shared
Service

AWS
RDS

Shared DB

© COPYRIGHT 2019 COVEROS, INC. ALL RIGHTS RESERVED. 36

Align the Developers

•Developer Environments - align with operational platform

• Should be able to fetch code build with very little effort; well documented, highly automated

• Local deploy/test cycle should be similar to operational (e.g., VM, docker, Operating system,
etc.)

•Caveat: support rapid change/build/test cycles supported by modern IDEs

© COPYRIGHT 2019 COVEROS, INC. ALL RIGHTS RESERVED. 37

Test Environments

•Why do you have them? What purpose do they serve?

• Static vs. dynamic environments

•A/B deployment patterns relate to this

Dev/Test Cluster

PECOS - EphemeralPECOS - Ephemeral

DevOps Shared Service Cluster

DevOps - Primary

Jenkins SonarQube

Nexus

Postgres Cassandra

Ephemeral Test

application

search

workflow-mgmt

kong

config-server

Rabbit MQ

Staging Cluster Set

Postgres Cassandra

Staging

application

search

workflow-mgmt

kong

config-server

Rabbit MQ

Postgres

Dev Integration

application

search

workflow-mgmt

kong

config-server

Rabbit MQ

Postgres

Cassandra

Selenium

© COPYRIGHT 2019 COVEROS, INC. ALL RIGHTS RESERVED. 38

Maturity: Security, Logging, Monitoring

Once you get the basics established, you’ll want to start building out and make sure things
continue working (foreshadowing...)

• Log collection (Logstash, Splunk)

•Monitoring tools (Nagios, Prometheus)

• Security (OpenSCAP, Zed Attack Proxy)

Apply these to

•Operating platform – keep your infrastructure available

•DevOps platform – keep your developer services available

•Application – keep your software available

© COPYRIGHT 2019 COVEROS, INC. ALL RIGHTS RESERVED. 39

Constructing the Delivery Pipeline

© COPYRIGHT 2019 COVEROS, INC. ALL RIGHTS RESERVED. 40

Stages of Delivery

Incremental quality gates as code makes its way through the delivery pipeline
• Continuous Integration produces deployable software that is scanned and tested in isolation
• Continuous Delivery produces running software that is validated for functionality, security, performance to enable

“promotion” to higher environments
• Continuous Monitoring ensures continuous secure/reliable behavior and adapts/recovers to anomalous behavior

Continuous MonitoringContinuous DeliveryContinuous Integration

Build / Package
• Compilation
• Static Analysis
• Unit Test
• Packaging
• Dependency checking
• Container image scanning

OUTPUT: Docker images that can
be deployed

Provision / Deploy
• Scale AWS instances
• Launch Docker containers
• Configure software
• Security scan instances
• Security scan containers

OUTPUT: Running containers in
Open Shift that can be tested

Test
• Functional test
• Security test
• Performance test

OUTPUT: Verified functionality
and configuration of application
environments

Operate
• Monitor
• Detect
• Adapt
• Scale
• Recover
• Backup
• Scan

OUTPUT: Detection and
adaptation of running systems

© COPYRIGHT 2019 COVEROS, INC. ALL RIGHTS RESERVED. 41

Pipeline and Tools

Use automation and tools to continuously assess quality, performance, and security in rapid feedback loops

Continuous MonitoringContinuous Integration

BuildCode

Continuous Delivery

commit

DEV

TEST

PROD

Compile
Test

Package
Publish

Unit Test
Integration Test

Code coverage

Code Scanning
Static Analysis

Bugs
Vulnerabilities
Technical Debt

Package
Dependency
checking

Vulnerable
components

Deploy Test

Provision
Install

Configure

Vulnerability Scanning

Deployment verification
Smoke test

Manual Testing
- Exploratory
- UAT

Functional Testing
- Behavioral
- API
- Web UI

Non-Functional Testing
- Load/Performance
- Web Security

Platform
Vulnerabilities

Test Results Defects
Change Requests

Test Promote

Operate

Monitor

© COPYRIGHT 2019 COVEROS, INC. ALL RIGHTS RESERVED. 42

Configuration Management and Version Control

“Version control everything”

•Application code
• No brainer, but need branching and build pattern

•DevOps automation code
• This is software. How will you build/test/release it? Branching?
• Maturity model: start simple, eventually need a "pipeline for your pipeline”

• Infrastructure as code
• Provisioning – scripted creation of infrastructure
• Configuration – servers, network, storage

Your CM process will define your delivery process

© COPYRIGHT 2019 COVEROS, INC. ALL RIGHTS RESERVED. 43

Branching Strategy

• Strive for "main line" development
• Use short, small feature branches for isolated changes
• Consider Github Flow (very simple), Git Flow (complex)
• Avoid "parallel release development" at all costs

•What problems does branching cause vs. solve?

•Align with your delivery pipeline

© COPYRIGHT 2019 COVEROS, INC. ALL RIGHTS RESERVED. 44

Side Bar: Versioning … do you need it?

• Is your app a multi-version beast, or simple end-of-the line single deployment?

•Keep it simple, (stupid)

• Semantic versioning vs. unique identifier
• Integrate version control identifiers with deployed code

•All software elements need a traceable identifier
• Source Code -> Deployable Package -> Running Software

•Very few deployable applications need linear versioning
• Does it matter if it’s 1.2.3 or 20180317 or a3e78b19d?

•Component libraries with APIs frequently need identifiable, increasing versions
• my-util:1.2.3 vs. 1.3.9 with different capabilities that link to your code interfaces

© COPYRIGHT 2019 COVEROS, INC. ALL RIGHTS RESERVED. 45

Integrating with Software Architecture

•Not all software lends itself to easy build, test, and deployment

•Work directly with software architecture and development teams

• Software must support
• Rapid build
• Automated test (controllability, observability)
• Data initialization
• Installation/configuration
• Monitoring/metrics

• Standards and "Definition of Done" should reflect this

•Development stories aren’t complete until all these things work

© COPYRIGHT 2019 COVEROS, INC. ALL RIGHTS RESERVED. 46

Maturity: Data DevOps

•How do you capture and test your “Data”
process?

•Provisioning databases with initial users,
schemas, permissions

• Initializing with tables, users, schemas

• Initializing test data

• Scrubbing sensitive test data

•ETL/data manipulation code

Often the hardest / "weirdest" part

Techniques

• Scripts to initialize blank DB

• Start with "pave over database"
restoration in the beginning

• Schema versioning: Liquibase/Flyway to
manage DB schema definition

• Security pitfall: “administrative"
permissions needed
• Partition “application” CRUD from

“administrative” DevOps users

© COPYRIGHT 2019 COVEROS, INC. ALL RIGHTS RESERVED. 47

Testing and Quality Analysis

© COPYRIGHT 2019 COVEROS, INC. ALL RIGHTS RESERVED. 48

Your efforts in DevOps will fail without
proper automated testing and assessment

that is fully integrated into the pipeline.

© COPYRIGHT 2019 COVEROS, INC. ALL RIGHTS RESERVED. 49

Goals for Testing in DevOps

•Keep software in continuous working state

•Establish confidence in change

• Force teams to build quality in (and agree it’s important)

•Avoid creating too much technical debt too early

Important: everywhere I say “Quality” I mean “Quality, Security,
Performance, and all the other –ilities” you can think of for your

software.

© COPYRIGHT 2019 COVEROS, INC. ALL RIGHTS RESERVED. 50

Put Some Effort into a Test Strategy

•Determine what you want to do, who's going to do it, how it's going to tie into the pipeline
• Developers
• Engineers in Test
• Business Analysts

• Establish standards for quality, security, performance, etc.

•Define the skills you will need on the team to succeed

•Heavy focus on automation
• CAN’T succeed without automation
• You cannot automate EVERYTHING

•Developer tests vs. "other" person tests
• Who? Consider roles and who can do it.
• Agile Test Engineer - automation, frameworks, close alignment with DevOps
• BA/Scrum Master - test definition, creation, exploratory testing
• Developers - technical tests

© COPYRIGHT 2019 COVEROS, INC. ALL RIGHTS RESERVED. 51

Quality Gates are Critical

Quality gates ensure that bad code cannot make it through the pipeline

• Static analysis - set gates early; avoid tech debt
• Standards: style, bugs, vulnerabilities (which standards not as important as following them)
• 3rd party dependency analysis - vulnerabilities, licensing

• Testing phases
• Pre-deployment testing - unit, component, mocking
• Post-deployment functional testing - services,

integration, databases, etc.
• Non-functional testing - security, performance,

reliability, availability

•Code Review
• Tie to branching process (Github pull requests)
• Small feature branches help this

Start left, move right (quickly)

© COPYRIGHT 2019 COVEROS, INC. ALL RIGHTS RESERVED. 52

Things that complicate testing and automation

•Micro-services – which versions work with each other?

•Parallel product versions – which versions of tests?

•Hardware (mobile) – simulated or real devices?

•Non-virtual environments – difficult to recreate

© COPYRIGHT 2019 COVEROS, INC. ALL RIGHTS RESERVED. 53

Getting Started with DevOps Testing

Create ONE of each test and make sure it gets
executed by the DevOps pipeline continuously

•Cover each test level
• Unit
• UI
• API
• Security

•Once the test framework is in place, it removes the barrier and enables test writing

•Pitfall: initially, your test results will be all over the place. You will realize the need for a
“quality dashboard”

© COPYRIGHT 2019 COVEROS, INC. ALL RIGHTS RESERVED. 54

Maturity: Assessment tools and layers

•As usual: tools help assess and enforce quality

•As you add tools, they will align to different layers of your architecture

AWS
Instance

Open Shift Cluster

Pod

AWS
Instance

AWS
Instance

Pod Pod Pod Pod

Micro-Service App Code

PodPod

© COPYRIGHT 2019 COVEROS, INC. ALL RIGHTS RESERVED. 55

Greenfield DevOps: Grow!

© COPYRIGHT 2019 COVEROS, INC. ALL RIGHTS RESERVED. 56

Start Small, Make It Work

• Launch basic DevOps tools (Jenkins, Sonar, Nexus, Git)

• Setup basic CI builds
• Developers use same gradle/npm build scripts as the pipeline

•Create some quality gates
• SonarQube static analysis
• Unit testing
• Code coverage (maybe)

•Create a test environment (by hand, if need be)

• Initialize deployment automation
• Docker deploy, Ansible installation
• Developers use same (similar) local deployment

All this can be done in days or weeks with the right people

© COPYRIGHT 2019 COVEROS, INC. ALL RIGHTS RESERVED. 57

Iterate to the next level

•Establish a branching process for the developers with code-review on merge

• Set up multi-branch builds in the pipeline

•Measure code coverage with your unit tests (establish metrics and standards)

•Automate installation of your operating platform (dynamic environments)

•Deploy for after every build

•Execute UI or API tests in the pipeline
A

W
A A

W
A A

W
A A

W
A

© COPYRIGHT 2019 COVEROS, INC. ALL RIGHTS RESERVED. 58

DevOps Maturity Evolution

Everything will improve with age

•Application code: master/feature branches, static code checks, unit tests, functional tests,
integration tests

•DevOps code: one version, multiple versions, scale, devops test environment

•Platform code: manual, automate, replicate, scale, monitor

•Team: learn, tune, improve

© COPYRIGHT 2019 COVEROS, INC. ALL RIGHTS RESERVED. 59

Don’t forget to build a solid team!

•Build a strong integrated team of Dev, Ops, and QA

• Strong problem solvers

• ”Can do” attitude

•Don’t put barriers in front of them

A field needs farmers ...

© COPYRIGHT 2019 COVEROS, INC. ALL RIGHTS RESERVED. 60

Generating Value

Remember, the main goal of DevOps is to deliver working code to the people who need it

•Prioritize what the developers need first

•Get software in front of stakeholders ASAP

Keep it real

•Don’t get hung up on making things perfect at first

•Establish quality gates to avoid (too much) technical debt

© COPYRIGHT 2019 COVEROS, INC. ALL RIGHTS RESERVED. 61

Questions?
Thank you!

rich.mills@coveros.com

https://www.coveros.com/services/devops/

© COPYRIGHT 2019 COVEROS, INC. ALL RIGHTS RESERVED. 62

Checklist for getting started

Do you have each of these?

•Version control and branching

• Standards (style, design, metrics, coverage)

•Platform infrastructure

•DevOps tools
• Jenkins
• Sonar
• Nexus
• Git

•Build automation

•Test automation

•Deployment automation

•Dashboards

