
HOW TO PREVENT 
CATASTROPHIC DOOM 
ON YOUR NEXT FEDERAL 
PROJECT

Presented by Ryan Kenney

ryan.kenney@coveros.com

https://www.linkedin.com/in/ryan-kenney-13703887

https://twitter.com/rkenney525

mailto:ryan.kenney@coveros.com
https://www.linkedin.com/in/ryan-kenney-13703887/
https://twitter.com/rkenney525


• Introduction

• Overview of Case Study

• Defining a Solution

• Fantastic Problems and How to Solve Them

• Wrap-up

• Q&A

Overview



• Born/raised in Rockingham, VA

• Senior Consultant at Coveros

• With Coveros since June 2013

• Agile Developer

• Technical Architect

• DevOps Tech Lead

Who is this guy?

Ryan Kenney

3



4

Overview of Case Study



The Government Enrollment and Application Support Radiator 
(GEASR) is the (fictious) online system responsible for 
consolidating government program enrollment processes across 
organizations.

(Based on the experiences and interactions of select government 
projects)

Case Study Overview

6

GEASR 2.0



GEASR 1.0 In Action

7

GEASR API

Civilian 

Auth svc

SSA Staff Auth 

svc

GEASR UI

Cross Org 

Search

Data 

Extract



What we have
• Monolithic application

• Uptime dependent on 
external services

• Legacy tools/frameworks

• Manual deployments

• Limited automated testing

What we want
• Less internal coupling

• Less external coupling

• Modern (supported) tools

• Automated deployments

• Lots of automated testing

Case Study Overview

9



What we want
• Less internal coupling

• Less external coupling

• Modern (supported) tools

• Automated deployments

• Lots of testing

How to get there
• Domain Driven Design and 

Microservices

• Smarter health checks

• Balance between LTS and 
cutting edge

• Automate Everything™

• Don’t wait to write tests

Case Study Overview

10



“Verticals and Horizontals”

11

Dev
Dev

Dev

QA

DevOps

UX/UG

Dev
Dev

Dev

QA

DevOps

UX/UG

Dev
Dev

Dev

QA

DevOps

UX/UG

Microservice A Microservice B Microservice C

Enterprise 

Architecture

Quality 

Assurance

DevOps

User 

Experience/

Engagement



12

Defining a Solution



• Versioned libraries, generally consumed at build time
• Things like apache-commons, Selenified, Spring Boot

• Semantic versioning is critical

• Version-aware Applications/APIs
• Public APIs consumed by one or more third parties

• Runtime versions important, build time not as critical

• “End of the line” applications
• Generally web or “forced update” applications

• Semantic versions are less useful

NOTE: Don’t tie your pipeline down to just one approach

What are we trying to deploy?

13



GitFlow

14



GitHub Flow

15



Continuous Delivery:

Continuous Delivery vs 
Continuous Deployment

16

Unit test
Static 

Analysis

Deploy to 

Staging

Validation

Tests

Deploy to 

Prod

Auto Auto Auto Manual

Continuous Deployment:

Unit test
Static 

Analysis

Deploy to 

Staging

Validation

Tests

Deploy to 

Prod

Auto Auto Auto Auto



Can and should you continuously 
deploy to production for federal clients?

Question of the Hour

17



• We can shield the developers with a “developer production”, 
that gets treated like real production

• Establish high confidence early on through PR Quality Gates

• Model internal process around deploying to DevProd

No, BUT

20



DevOps doesn’t just “happen”

21



Sounds great, but for this to work we need

• Automated testing of everything
• Application

• Pipeline

• Platform

• Automated deployments (again, of everything)

• Developer buy-in

• Organizational support

Making it work

22



Testing Everything

23

Developer 

Production
Pre Production Production

Cluster redundancy enables platform testing but requires your pipeline be 

sufficiently generic and parameterized



In order to do any of this, we need a DevOps pipeline

Automating Deployments

24

GitHub Jenkins DevProd Pre Prod Prod

Ephemeral 

Environments



Configuration Management

25

Pipeline Configuration Cluster

Templates:

• microservice-1

• microservice-2

• microservice-3

Environments:

• DevProd.properties

• Impl.properties

• Prod.properties



26

Fantastic Problems and How to Solve Them



How things go wrong

27



When your developers have no knowledge of or do not care 
about the pipeline.. but you have a “DevOps” team.

• DevOps reps turn into the Ops reps

• Using automation != DevOps

Solution?

• DevOps and Agile are all about the cultural change

• Top-level support and education

• Replace those that are unable to adapt with those that are

Problem: DevOps In Name Only

28



Common symptoms include hearing things like:

• “this is just a prototype”

• “this code is going to radically change later”

• “the UI keeps changing”

Common causes:

• Client pressure to close stories

• Poorly defined definition of done

• Short-sighted management/client

Problem: Reluctancy to Test

29



(and also)

• Put testing metrics in your definition of done

• Make it easy for testers to write automated tests

• Communication with the client

• Write testable code

Solution: Reluctancy to Test

30



When both intra-team and extra-team communication is 
overburdened by process.

• Low bus factors are common in siloed environments

• Lots of process involved in asking a team to make a change

Solutions?

• Establish responsibility/ownership, but maintain the “same 
team” mentality

• Share knowledge within the team

• Leverage horizontal teams to break down barriers across teams

Problem: Back to Silos

31



1. Everyone needs to buy in to your DevOps process. 
Management, developers, client, etc.

2. Create a pseudo production environment for developers to 
use

3. Use on-demand environments instead of static environments 
for earlier, easier testing

4. Write, run, and maintain tests from the beginning

5. Teach your client about DevOps and they’re more likely to 
cooperate and accommodate your goals

#Coveros5

32



What are other good ways you can succeed on federal projects?

What’s one thing you learned today that you’re taking back to 
your team?

(if we don’t finish here, tell me what you think in #devops in the 
TechWell HUB )

http://hub.techwell.com

What do you think?

33


