
1/24/2018

1

1

And Effective Ways to Think About TDD

DB20111207
www.techniquesofdesign.com
info@techniquesofdesign.com

http://ToBeAgile.com
info@ToBeAgile.com © Copyright 2012-2018 To Be Agile DB20180111

Overcoming Test-Driven Damage

2

David Scott Bernstein

 Software developer since 1980

 Trained 8,000 developers since 1990

 Published author since 2015

 Website: http://ToBeAgile.com



1/24/2018

2

3

My Book – Beyond Legacy Code
http://ToBeAgile.com
info@ToBeAgile.com

© Copyright 2012-2016 To Be Agile DB20160109

http://BeyondLegacyCode.com

4

1. Say What, Why, and for Whom before How: With a Product Owner defining the next most
important features to build, the need for upfront requirements goes away.

2. Build in Small Batches: Building incrementally increases feedback, helps simplify the
construction of complex systems, and reduces risks.

3. Integrate Continuously: Sets up the infrastructure for incremental development.

4. Collaborate: Spiking, pairing, and swarming as a team to solve problems and radiate
knowledge throughout an organization.

5. Create CLEAN Code: Share standards and practices for building software with code qualities
that support testability.

6. Write the Test First: Drops the cost of building and maintaining software dramatically.

7. Specify Behaviors with Tests: Uses tests to define and document behaviors.

8. Implement the Design Last: Paying technical debt can pay back dividends in the short term as
well as the long term.

9. Refactor Legacy Code: Incorporate learning and pay off technical debt.

Nine Essential Practices



1/24/2018

3

5
COPYRIGHT © TECHNIQUES OF DESIGN

5

Test First Development

Test First or Test Last?



1/24/2018

4

How Can it be Faster?

What We Stop Doing



1/24/2018

5

Test First

Slow Then Faster



1/24/2018

6

Benefits of TDD

Why TDD Works



1/24/2018

7

TDD Can Fail

Code Quality and Tests



1/24/2018

8

Another Client Told Me

Fast Tests



1/24/2018

9

TDD Does Not Replace QA

What is a Test?



1/24/2018

10

What a Test Tests

It Becomes a Test



1/24/2018

11

The Dual Role

Drive Development with Tests



1/24/2018

12

TDD Metaphors

An Introduction



1/24/2018

13

Three Steps in Test First

_______ _______ _______

Red Bar, Green Bars

__________ __________



1/24/2018

14

Write a Failing Test

______________________

Celebrate the Red Bar

______________________



1/24/2018

15

Getting to Green Bar

______________________

Being Green

______________________



1/24/2018

16

Refactor Code

______________________

Refactor Tests

______________________



1/24/2018

17

How Many is Enough?

On the Three Steps



1/24/2018

18

35

For Example

 Suppose I want to write an adder class

 I’d start by writing a failing test

Adder adder = new Adder();

assertEquals(“1+1=2”, 2, adder.add(1,1), .1);

 I’d then stub it out so it compiles

public class Adder {

public int add(p1, p2) {

return 0;

}

}

1 + 1 = 2

Java/C#

Red Bar



1/24/2018

19

37

A Mad Dash

 What’s the fastest way to get to the green bar?

– Return 2

public class Adder {

public int add(p1, p2) {

return 2;

}

}

-
Java/C#

Green Bar



1/24/2018

20

39

Let’s Try Another

assertEquals(“2+2=4”, 4, adder.add(2,2), .1);

 And what happens?

-
Java/C#

Red Bar



1/24/2018

21

41

Now I Have a Choice

 I can add a conditional logic to my code

– if ((p1 == 1) && (p2 == 1)) return 2;

– if ((p1 == 2) && (p2 == 2)) return 4;

 Or I can just…

– return p1+p2;

 Notice how doing the right thing is also doing the easiest thing

-

Green Bar



1/24/2018

22

Test as Design

Uncle Bob’s Laws of TDD

3



1/24/2018

23

What Makes a Good Test?

Characteristics of a Good Test



1/24/2018

24

What is a Unit?

Test Semantics



1/24/2018

25

Instrumentation

50

Instead of Doing This…

@Test

public void testConstructor() {

User user = new User("Clark", "Kent", "user@example.com",

"Superman", "kryptonite");

assertEquals("Clark", user.firstName());

assertEquals("Kent", user.lastName());

assertEquals("user@example.com", user.eMail());

assertEquals("Superman", user.userName());

assertEquals("kryptonite", user.password());

}



1/24/2018

26

51

Do This

@Test

public void testRetrievingParametersAfterConstruction() {

private static final String firstName = "Clark";

private static final String lastName = "Kent";

private static final String eMail = "user@example.com";

private static final String userName = "Superman";

private static final String password = "kryptonite";

User user = new User(firstName, lastName, eMail, userName,
password);

assertEquals(firstName, user.firstName());

assertEquals(lastName, user.lastName());

assertEquals(eMail, user.eMail());

assertEquals(userName, user.userName());

assertEquals(password, user.password());

}

52

Generalizations

 Instrumentation can also specify generalizations:

public void testAddition() {

private int anyInt = 1;

private int theResult = 2;

Adder adder = new Adder();

assertEquals(theResult, adder.add(anyInt, anyInt));

}



1/24/2018

27

Instrumentation Benefits

54

Defining a Linear Range

 How many assertions do you need to specify a linear range?

 4… or 3

 For example, to validate value is within a range from
MINIMUM_VALUE to MAXIMUM_VALUE:

assertEquals(value, MINIMUM_VALUE – 1); // exception

assertEquals(value, MINIMUM_VALUE); // valid

assertEquals(value, MAXIMUM_VALUE); // superfluous?

assertEquals(value, MAXIMUM_VALUE + 1); // exception



1/24/2018

28

55

Specifying Constants

 Using tests as specifications requires completeness

 “That which is not specified is specified to be false.”

 Any code change that could mutate behavior should have a test

 This includes having asserts for constants:

assertEquals(MINIMUM_VALUE, 1);

assertEquals(MAXIMUM_VALUE, 10);

Two Kinds of Tests

2



1/24/2018

29

Boundary Testing

Workflow Testing



1/24/2018

30

Testable Code

Don’t “Test Until Bored”



1/24/2018

31

TDD is Not Enough

62

Thank You!

 We have just scratched the surface, to learn more:

– Read my blog: http://ToBeAgile.com/blog

– Sign up for my newsletter: http://ToBeAgile.com/signup

– Follow me on Twitter (@ToBeAgile)

– Read my book:

– Beyond Legacy Code: Nine Practices to Extend the Life (and Value) of
Your Software (available from http://BeyondLegacyCode.com)

– Attend my one of my Certified Scrum Developer trainings

– See http://ToBeAgile.com/training for my public class schedule

– Or contact me to arrange a private class for your organization

– Visit http://ToBeAgile.com for more information

Please fill out your feedback forms!



1/24/2018

32

63

Notes

64

Notes


