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1. Say What, Why, and for Whom before How: With a Product Owner defining the next most
important features to build, the need for upfront requirements goes away.

2. Build in Small Batches: Building incrementally increases feedback, helps simplify the
construction of complex systems, and reduces risks.

3. Integrate Continuously: Sets up the infrastructure for incremental development.

4. Collaborate: Spiking, pairing, and swarming as a team to solve problems and radiate
knowledge throughout an organization.

5. Create CLEAN Code: Share standards and practices for building software with code qualities
that support testability.

6. Write the Test First: Drops the cost of building and maintaining software dramatically.

7. Specify Behaviors with Tests: Uses tests to define and document behaviors.

8. Implement the Design Last: Paying technical debt can pay back dividends in the short term as
well as the long term.

9. Refactor Legacy Code: Incorporate learning and pay off technical debt.

Nine Essential Practices
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Test First Development

Test First or Test Last?
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How Can it be Faster?

What We Stop Doing
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Test First

Slow Then Faster
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Benefits of TDD

Why TDD Works
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TDD Can Fail

Code Quality and Tests
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Another Client Told Me

Fast Tests
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TDD Does Not Replace QA

What is a Test?
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What a Test Tests

It Becomes a Test
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The Dual Role

Drive Development with Tests
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TDD Metaphors

An Introduction
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Three Steps in Test First

_______ _______ _______

Red Bar, Green Bars

__________ __________
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Write a Failing Test

______________________

Celebrate the Red Bar

______________________
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Getting to Green Bar

______________________

Being Green

______________________
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Refactor Code

______________________

Refactor Tests

______________________
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How Many is Enough?

On the Three Steps
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For Example

 Suppose I want to write an adder class

 I’d start by writing a failing test

Adder adder = new Adder();

assertEquals(“1+1=2”, 2, adder.add(1,1), .1);

 I’d then stub it out so it compiles

public class Adder {

public int add(p1, p2) {

return 0;

}

}

1 + 1 = 2

Java/C#

Red Bar
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A Mad Dash

 What’s the fastest way to get to the green bar?

– Return 2

public class Adder {

public int add(p1, p2) {

return 2;

}

}

-
Java/C#

Green Bar
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Let’s Try Another

assertEquals(“2+2=4”, 4, adder.add(2,2), .1);

 And what happens?

-
Java/C#

Red Bar
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Now I Have a Choice

 I can add a conditional logic to my code

– if ((p1 == 1) && (p2 == 1)) return 2;

– if ((p1 == 2) && (p2 == 2)) return 4;

 Or I can just…

– return p1+p2;

 Notice how doing the right thing is also doing the easiest thing

-

Green Bar
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Test as Design

Uncle Bob’s Laws of TDD
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What Makes a Good Test?

Characteristics of a Good Test
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What is a Unit?

Test Semantics
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Instrumentation
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Instead of Doing This…

@Test

public void testConstructor() {

User user = new User("Clark", "Kent", "user@example.com",

"Superman", "kryptonite");

assertEquals("Clark", user.firstName());

assertEquals("Kent", user.lastName());

assertEquals("user@example.com", user.eMail());

assertEquals("Superman", user.userName());

assertEquals("kryptonite", user.password());

}
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Do This

@Test

public void testRetrievingParametersAfterConstruction() {

private static final String firstName = "Clark";

private static final String lastName = "Kent";

private static final String eMail = "user@example.com";

private static final String userName = "Superman";

private static final String password = "kryptonite";

User user = new User(firstName, lastName, eMail, userName,
password);

assertEquals(firstName, user.firstName());

assertEquals(lastName, user.lastName());

assertEquals(eMail, user.eMail());

assertEquals(userName, user.userName());

assertEquals(password, user.password());

}
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Generalizations

 Instrumentation can also specify generalizations:

public void testAddition() {

private int anyInt = 1;

private int theResult = 2;

Adder adder = new Adder();

assertEquals(theResult, adder.add(anyInt, anyInt));

}
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Instrumentation Benefits
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Defining a Linear Range

 How many assertions do you need to specify a linear range?

 4… or 3

 For example, to validate value is within a range from
MINIMUM_VALUE to MAXIMUM_VALUE:

assertEquals(value, MINIMUM_VALUE – 1); // exception

assertEquals(value, MINIMUM_VALUE); // valid

assertEquals(value, MAXIMUM_VALUE); // superfluous?

assertEquals(value, MAXIMUM_VALUE + 1); // exception



1/24/2018

28

55

Specifying Constants

 Using tests as specifications requires completeness

 “That which is not specified is specified to be false.”

 Any code change that could mutate behavior should have a test

 This includes having asserts for constants:

assertEquals(MINIMUM_VALUE, 1);

assertEquals(MAXIMUM_VALUE, 10);

Two Kinds of Tests

2
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Boundary Testing

Workflow Testing
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Testable Code

Don’t “Test Until Bored”
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TDD is Not Enough
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Thank You!

 We have just scratched the surface, to learn more:

– Read my blog: http://ToBeAgile.com/blog

– Sign up for my newsletter: http://ToBeAgile.com/signup

– Follow me on Twitter (@ToBeAgile)

– Read my book:

– Beyond Legacy Code: Nine Practices to Extend the Life (and Value) of
Your Software (available from http://BeyondLegacyCode.com)

– Attend my one of my Certified Scrum Developer trainings

– See http://ToBeAgile.com/training for my public class schedule

– Or contact me to arrange a private class for your organization

– Visit http://ToBeAgile.com for more information

Please fill out your feedback forms!
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Notes
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Notes


