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Serverless Security! 
Wait, What?
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Eric Sheridan
Chief Scientist
eric.sheridan@whitehatsec.com
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Agenda

⇢ Overview of Serverless Architecture

⇢ Key Security Considerations

⇢ “Sec” in “DevSecOps”

⇢ Q and A
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Transition to Serverless
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BUSINESS
LOGIC LAYER

DATA LAYER

PRESENTATION
LAYER

API

Presentation Layer!

API

Presentation Layer!

API

Presentation Layer!
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Serverless Framework - Example
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Challenges with Security
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▸  Explosion of network accessible API!
▸  Lack of clear trust boundaries!
▸  Poor understanding of secure design patterns!
▸  Rapid pace of release!
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Isolation & Contention
Security Consideration
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Serverless Isolation

Understanding isolation in across vendors…

•  AWS provides you with dedicated VM instances
•  No clear way to run your functions on a VM dedicated to another User

•  Azure may share your VM instance with other users
•  Results in shared resources with other users!

•  Google’s strategy for isolation is unclear
•  No clear way to uniquely identify underlying VM / host
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Spot the Bug: ReadLine

(Intentionally Left Blank)
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3rd Party Components
Security Consideration
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Spot the Bug: Components

(Intentionally Left Blank)
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It is estimated that nearly 90 
percent of software code is 
composed of open source 
components. 

90% 
OF CODE 
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The Equifax Hack: Struts Vulnerability  
Apache Struts 2 is an open-source web application framework for 
developing Java EE web applications.  
Highlights huge need for Software Composition Analysis 
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Software Composition Analysis (SCA)
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Software Composition Analysis (SCA) 
allows you to identify third-party and 
open source components that have 
been integrated into all your 
applications and for each of these 
components, it identifies:

•  Open security CVEs (if any) 
•  Licenses
•  Out-of-date library versions & age

© 2018 WhiteHat Security, Inc. 

Sensitive Data
Security Consideration
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Spot the Bug: Tokens

(Intentionally Left Blank)
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Spot the Bug: Cryptography

(Intentionally Left Blank)
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Explore Existing Solutions

•  AWS Key Management Service and Azure Key Vault
•  Introduces “master keys” concept to encrypt sensitive data
•  Exposed via encrypted environment variables or API

•  Serverless Secrets
•  Unofficial extension of the “Serverless Framework” to abstract key management
•  https://github.com/trek10inc/serverless-secrets

•  Custom Crypto Façade
•  Expose “simple” crypto API where key management, rotation, etc. is hidden
•  Developer need only ensure the API is invoked in the right locations

17 
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Unsafe Consumption
Security Consideration
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Spot the Bug: Interpreter

(Intentionally Left Blank)
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Variable Binding

Explicitly differentiate for the SQL parser commands vs data
•  “Pre-compiles” the SQL query before introducing untrusted data  

Rewrite dynamic SQL queries into literals with placeholders
•  (before) “SELECT * FROM USERS WHERE name = ‘” + name + “’”;
•  (after) “SELECT * FROM USERS WHERE name = ?”; 

Available in all modern development languages
•  Java, .NET, NodeJS, etc.
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Examples in NodeJS Using Sequelize

BAD
let name = req.params.name; 
let sql = “SELECT * FROM USERS WHERE NAME =‘” + name + “’”; 
let result = sequelize.query(sql, { type: sequelize.QueryTypes.SELECT }); 
 

GOOD
let name = req.params.name; 
let sql = “SELECT * FROM USERS WHERE NAME = ?”; 
let result = sequelize.query(sql, { 
    type: sequelize.QueryTypes.SELECT, replacements: [ name ] 
}); 

GOOD
let User = require(‘models’).User; 
let result = User.findOne({ where: { name: req.params.name } });

© 2018 WhiteHat Security, Inc. 

Spot the Bug: Service

(Intentionally Left Blank)

22 



11/1/18	
  

12	
  

© 2018 WhiteHat Security, Inc. 

Integration!
QA Pipeline!

Jenkins 
(Nightly) 

FILE 
VULNERABILITY 
TICKET 

QA INTEGRATION 
•  Dynamic Testing 
•  Result Verification 

4 STAGE 

Security at the pace of release
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PRE-COMMIT 
•  Static Analysis 
•  Security Unit Tests 
•  IDE integration 
•  Education 

1

Code 
Repo 

Run 
Tests 

PULL-REQUEST 
•  Code Review 
•  Static Analysis 
•  Security Unit Tests 

2

PASS, 
MERGE 

Team 
Integration 

Build 
Artifacts 

Object 
Registry 

INTEGRATIONS 
•  Dynamic Testing 
•  Result Verification 

3

FILE 
VULNERABILITY 
TICKET 

PRODUCTION 

RELEASE 
•  Production safe 
•  Dynamic testing 

5 WAF / RASP 6
RULES 
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Takeaways
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Know your trust boundaries

Embed security in DevOps

Security challenges are de-centralized
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Thank you
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Eric Sheridan
Chief Scientist
eric.sheridan@whitehatsec.com


