
	

	

DT11	

DevSecOps	

Thursday,	
 November	
 8th,	
 2018	
 3:00	
 PM	

	

	

	

	

	

	

Serverless	
 Security:	
 Overcome	

Architectural	
 Security	
 Challenges	

	

Presented	
 by:	
 	

	

Eric	
 Sheridan	

WhiteHat	
 Security	

‘	
 	

	

Brought	
 to	
 you	
 by:	
 	

	
 	

	

	

	

	

350	
 Corporate	
 Way,	
 Suite	
 400,	
 Orange	
 Park,	
 FL	
 32073	
 	

888-­‐-­‐-­‐268-­‐-­‐-­‐8770	
 ·∙·∙	
 904-­‐-­‐-­‐278-­‐-­‐-­‐0524	
 -­‐	
 info@techwell.com	
 -­‐	
 http://www.starwest.techwell.com/	
 	
 	

	

	
 	

	

	

Eric	
 Sheridan	

	

	

As	
 chief	
 scientist	
 at	
 WhiteHat	
 Security,	
 Eric	
 oversees	
 research	
 and	
 development	
 for	

Sentinel	
 Source	
 and	
 related	
 products.	
 Eric	
 leads	
 the	
 WhiteHat	
 Certified	
 Secure	

Developer	
 (WCSD)	
 program,	
 a	
 free	
 training	
 program	
 designed	
 to	
 educate	
 and	
 certify	

developers	
 on	
 secure	
 coding	
 and	
 application	
 security	
 best	
 practices.	
 Prior	
 to	
 joining	

WhiteHat,	
 Eric	
 cofounded	
 Infrared	
 Security,	
 specializing	
 in	
 application	
 security	
 and	

next-­‐generation	
 static	
 analysis	
 technologies	
 that	
 were	
 ultimately	
 integrated	
 within	

WhiteHat	
 Sentinel	
 Source.	
 He	
 earned	
 a	
 bachelor	
 of	
 science	
 degree	
 in	
 computer	

science	
 with	
 a	
 track	
 in	
 security	
 from	
 Towson	
 University.	

	

	

11/1/18	

1	

© 2018 WhiteHat Security, Inc.

Serverless Security! 
Wait, What?

1

Eric Sheridan
Chief Scientist
eric.sheridan@whitehatsec.com

© 2018 WhiteHat Security, Inc.

Agenda

⇢ Overview of Serverless Architecture

⇢ Key Security Considerations

⇢ “Sec” in “DevSecOps”

⇢ Q and A

2

11/1/18	

2	

© 2018 WhiteHat Security, Inc.

Transition to Serverless

3

BUSINESS
LOGIC LAYER

DATA LAYER

PRESENTATION
LAYER

API

Presentation Layer!

API

Presentation Layer!

API

Presentation Layer!

© 2018 WhiteHat Security, Inc.

Serverless Framework - Example

4

11/1/18	

3	

© 2018 WhiteHat Security, Inc.

Challenges with Security

5

▸  Explosion of network accessible API!
▸  Lack of clear trust boundaries!
▸  Poor understanding of secure design patterns!
▸  Rapid pace of release!

© 2018 WhiteHat Security, Inc.

Isolation & Contention
Security Consideration

6

11/1/18	

4	

© 2018 WhiteHat Security, Inc.

Serverless Isolation

Understanding isolation in across vendors…

•  AWS provides you with dedicated VM instances
•  No clear way to run your functions on a VM dedicated to another User

•  Azure may share your VM instance with other users
•  Results in shared resources with other users!

•  Google’s strategy for isolation is unclear
•  No clear way to uniquely identify underlying VM / host

7

© 2018 WhiteHat Security, Inc.

Spot the Bug: ReadLine

(Intentionally Left Blank)

8

11/1/18	

5	

© 2018 WhiteHat Security, Inc.

3rd Party Components
Security Consideration

9

© 2018 WhiteHat Security, Inc.

Spot the Bug: Components

(Intentionally Left Blank)

10

11/1/18	

6	

© 2018 WhiteHat Security, Inc. 11

It is estimated that nearly 90
percent of software code is
composed of open source
components.

90%
OF CODE

© 2018 WhiteHat Security, Inc. 11

© 2018 WhiteHat Security, Inc. © 2017 WhiteHat Security, Inc. 12

The Equifax Hack: Struts Vulnerability  
Apache Struts 2 is an open-source web application framework for
developing Java EE web applications.
Highlights huge need for Software Composition Analysis

11/1/18	

7	

© 2018 WhiteHat Security, Inc.

Software Composition Analysis (SCA)

13

Software Composition Analysis (SCA)
allows you to identify third-party and
open source components that have
been integrated into all your
applications and for each of these
components, it identifies:

•  Open security CVEs (if any)
•  Licenses
•  Out-of-date library versions & age

© 2018 WhiteHat Security, Inc.

Sensitive Data
Security Consideration

14

11/1/18	

8	

© 2018 WhiteHat Security, Inc.

Spot the Bug: Tokens

(Intentionally Left Blank)

15

© 2018 WhiteHat Security, Inc.

Spot the Bug: Cryptography

(Intentionally Left Blank)

16

11/1/18	

9	

© 2018 WhiteHat Security, Inc.

Explore Existing Solutions

•  AWS Key Management Service and Azure Key Vault
•  Introduces “master keys” concept to encrypt sensitive data
•  Exposed via encrypted environment variables or API

•  Serverless Secrets
•  Unofficial extension of the “Serverless Framework” to abstract key management
•  https://github.com/trek10inc/serverless-secrets

•  Custom Crypto Façade
•  Expose “simple” crypto API where key management, rotation, etc. is hidden
•  Developer need only ensure the API is invoked in the right locations

17

© 2018 WhiteHat Security, Inc.

Unsafe Consumption
Security Consideration

18

11/1/18	

10	

© 2018 WhiteHat Security, Inc.

Spot the Bug: Interpreter

(Intentionally Left Blank)

19

© 2018 WhiteHat Security, Inc.

Variable Binding

Explicitly differentiate for the SQL parser commands vs data
•  “Pre-compiles” the SQL query before introducing untrusted data  

Rewrite dynamic SQL queries into literals with placeholders
•  (before) “SELECT * FROM USERS WHERE name = ‘” + name + “’”;
•  (after) “SELECT * FROM USERS WHERE name = ?”; 

Available in all modern development languages
•  Java, .NET, NodeJS, etc.

11/1/18	

11	

© 2018 WhiteHat Security, Inc.

Examples in NodeJS Using Sequelize

BAD
let name = req.params.name;
let sql = “SELECT * FROM USERS WHERE NAME =‘” + name + “’”;
let result = sequelize.query(sql, { type: sequelize.QueryTypes.SELECT });

GOOD
let name = req.params.name;
let sql = “SELECT * FROM USERS WHERE NAME = ?”;
let result = sequelize.query(sql, {
 type: sequelize.QueryTypes.SELECT, replacements: [name]
});

GOOD
let User = require(‘models’).User;
let result = User.findOne({ where: { name: req.params.name } });

© 2018 WhiteHat Security, Inc.

Spot the Bug: Service

(Intentionally Left Blank)

22

11/1/18	

12	

© 2018 WhiteHat Security, Inc.

Integration!
QA Pipeline!

Jenkins
(Nightly)

FILE
VULNERABILITY
TICKET

QA INTEGRATION
•  Dynamic Testing
•  Result Verification

4 STAGE

Security at the pace of release

23

PRE-COMMIT
•  Static Analysis
•  Security Unit Tests
•  IDE integration
•  Education

1

Code
Repo

Run
Tests

PULL-REQUEST
•  Code Review
•  Static Analysis
•  Security Unit Tests

2

PASS,
MERGE

Team
Integration

Build
Artifacts

Object
Registry

INTEGRATIONS
•  Dynamic Testing
•  Result Verification

3

FILE
VULNERABILITY
TICKET

PRODUCTION

RELEASE
•  Production safe
•  Dynamic testing

5 WAF / RASP 6
RULES

© 2018 WhiteHat Security, Inc.

Takeaways

24

Know your trust boundaries

Embed security in DevOps

Security challenges are de-centralized

11/1/18	

13	

© 2018 WhiteHat Security, Inc. Company Confidential © 2018 WhiteHat Security, Inc.

Thank you

25

Eric Sheridan
Chief Scientist
eric.sheridan@whitehatsec.com

