
	
	
DT11	
DevSecOps	
Thursday,	 November	 8th,	 2018	 3:00	 PM	
	
	
	
	
	
	

Serverless	 Security:	 Overcome	
Architectural	 Security	 Challenges	

	
Presented	 by:	 	

	

Eric	 Sheridan	
WhiteHat	 Security	

‘	 	
	

Brought	 to	 you	 by:	 	
	 	

	
	

	
	

350	 Corporate	 Way,	 Suite	 400,	 Orange	 Park,	 FL	 32073	 	
888-‐-‐-‐268-‐-‐-‐8770	 ·∙·∙	 904-‐-‐-‐278-‐-‐-‐0524	 -‐	 info@techwell.com	 -‐	 http://www.starwest.techwell.com/	 	 	

	

	 	

	
	

Eric	 Sheridan	
	
	
As	 chief	 scientist	 at	 WhiteHat	 Security,	 Eric	 oversees	 research	 and	 development	 for	
Sentinel	 Source	 and	 related	 products.	 Eric	 leads	 the	 WhiteHat	 Certified	 Secure	
Developer	 (WCSD)	 program,	 a	 free	 training	 program	 designed	 to	 educate	 and	 certify	
developers	 on	 secure	 coding	 and	 application	 security	 best	 practices.	 Prior	 to	 joining	
WhiteHat,	 Eric	 cofounded	 Infrared	 Security,	 specializing	 in	 application	 security	 and	
next-‐generation	 static	 analysis	 technologies	 that	 were	 ultimately	 integrated	 within	
WhiteHat	 Sentinel	 Source.	 He	 earned	 a	 bachelor	 of	 science	 degree	 in	 computer	
science	 with	 a	 track	 in	 security	 from	 Towson	 University.	
	
	

11/1/18	

1	

© 2018 WhiteHat Security, Inc.

Serverless Security! 
Wait, What?

1

Eric Sheridan
Chief Scientist
eric.sheridan@whitehatsec.com

© 2018 WhiteHat Security, Inc.

Agenda

⇢ Overview of Serverless Architecture

⇢ Key Security Considerations

⇢ “Sec” in “DevSecOps”

⇢ Q and A

2

11/1/18	

2	

© 2018 WhiteHat Security, Inc.

Transition to Serverless

3

BUSINESS
LOGIC LAYER

DATA LAYER

PRESENTATION
LAYER

API

Presentation Layer!

API

Presentation Layer!

API

Presentation Layer!

© 2018 WhiteHat Security, Inc.

Serverless Framework - Example

4

11/1/18	

3	

© 2018 WhiteHat Security, Inc.

Challenges with Security

5

▸  Explosion of network accessible API!
▸  Lack of clear trust boundaries!
▸  Poor understanding of secure design patterns!
▸  Rapid pace of release!

© 2018 WhiteHat Security, Inc.

Isolation & Contention
Security Consideration

6

11/1/18	

4	

© 2018 WhiteHat Security, Inc.

Serverless Isolation

Understanding isolation in across vendors…

•  AWS provides you with dedicated VM instances
•  No clear way to run your functions on a VM dedicated to another User

•  Azure may share your VM instance with other users
•  Results in shared resources with other users!

•  Google’s strategy for isolation is unclear
•  No clear way to uniquely identify underlying VM / host

7

© 2018 WhiteHat Security, Inc.

Spot the Bug: ReadLine

(Intentionally Left Blank)

8

11/1/18	

5	

© 2018 WhiteHat Security, Inc.

3rd Party Components
Security Consideration

9

© 2018 WhiteHat Security, Inc.

Spot the Bug: Components

(Intentionally Left Blank)

10

11/1/18	

6	

© 2018 WhiteHat Security, Inc. 11

It is estimated that nearly 90
percent of software code is
composed of open source
components.

90%
OF CODE

© 2018 WhiteHat Security, Inc. 11

© 2018 WhiteHat Security, Inc. © 2017 WhiteHat Security, Inc. 12

The Equifax Hack: Struts Vulnerability  
Apache Struts 2 is an open-source web application framework for
developing Java EE web applications.
Highlights huge need for Software Composition Analysis

11/1/18	

7	

© 2018 WhiteHat Security, Inc.

Software Composition Analysis (SCA)

13

Software Composition Analysis (SCA)
allows you to identify third-party and
open source components that have
been integrated into all your
applications and for each of these
components, it identifies:

•  Open security CVEs (if any)
•  Licenses
•  Out-of-date library versions & age

© 2018 WhiteHat Security, Inc.

Sensitive Data
Security Consideration

14

11/1/18	

8	

© 2018 WhiteHat Security, Inc.

Spot the Bug: Tokens

(Intentionally Left Blank)

15

© 2018 WhiteHat Security, Inc.

Spot the Bug: Cryptography

(Intentionally Left Blank)

16

11/1/18	

9	

© 2018 WhiteHat Security, Inc.

Explore Existing Solutions

•  AWS Key Management Service and Azure Key Vault
•  Introduces “master keys” concept to encrypt sensitive data
•  Exposed via encrypted environment variables or API

•  Serverless Secrets
•  Unofficial extension of the “Serverless Framework” to abstract key management
•  https://github.com/trek10inc/serverless-secrets

•  Custom Crypto Façade
•  Expose “simple” crypto API where key management, rotation, etc. is hidden
•  Developer need only ensure the API is invoked in the right locations

17

© 2018 WhiteHat Security, Inc.

Unsafe Consumption
Security Consideration

18

11/1/18	

10	

© 2018 WhiteHat Security, Inc.

Spot the Bug: Interpreter

(Intentionally Left Blank)

19

© 2018 WhiteHat Security, Inc.

Variable Binding

Explicitly differentiate for the SQL parser commands vs data
•  “Pre-compiles” the SQL query before introducing untrusted data  

Rewrite dynamic SQL queries into literals with placeholders
•  (before) “SELECT * FROM USERS WHERE name = ‘” + name + “’”;
•  (after) “SELECT * FROM USERS WHERE name = ?”; 

Available in all modern development languages
•  Java, .NET, NodeJS, etc.

11/1/18	

11	

© 2018 WhiteHat Security, Inc.

Examples in NodeJS Using Sequelize

BAD
let name = req.params.name;
let sql = “SELECT * FROM USERS WHERE NAME =‘” + name + “’”;
let result = sequelize.query(sql, { type: sequelize.QueryTypes.SELECT });

GOOD
let name = req.params.name;
let sql = “SELECT * FROM USERS WHERE NAME = ?”;
let result = sequelize.query(sql, {
 type: sequelize.QueryTypes.SELECT, replacements: [name]
});

GOOD
let User = require(‘models’).User;
let result = User.findOne({ where: { name: req.params.name } });

© 2018 WhiteHat Security, Inc.

Spot the Bug: Service

(Intentionally Left Blank)

22

11/1/18	

12	

© 2018 WhiteHat Security, Inc.

Integration!
QA Pipeline!

Jenkins
(Nightly)

FILE
VULNERABILITY
TICKET

QA INTEGRATION
•  Dynamic Testing
•  Result Verification

4 STAGE

Security at the pace of release

23

PRE-COMMIT
•  Static Analysis
•  Security Unit Tests
•  IDE integration
•  Education

1

Code
Repo

Run
Tests

PULL-REQUEST
•  Code Review
•  Static Analysis
•  Security Unit Tests

2

PASS,
MERGE

Team
Integration

Build
Artifacts

Object
Registry

INTEGRATIONS
•  Dynamic Testing
•  Result Verification

3

FILE
VULNERABILITY
TICKET

PRODUCTION

RELEASE
•  Production safe
•  Dynamic testing

5 WAF / RASP 6
RULES

© 2018 WhiteHat Security, Inc.

Takeaways

24

Know your trust boundaries

Embed security in DevOps

Security challenges are de-centralized

11/1/18	

13	

© 2018 WhiteHat Security, Inc. Company Confidential © 2018 WhiteHat Security, Inc.

Thank you

25

Eric Sheridan
Chief Scientist
eric.sheridan@whitehatsec.com

