

	
	
W3	
Test	 Automation	
Wednesday,	 October	 23rd,	 2019	 10:15	 AM	
	
	
	
	

Destroying	 the	 Horcruxes	 of	 Full-‐Stack	
Automation	

	
Presented	 by:	 	

	

	 Iryna	 Suprun	
	

Xandr	
	

Brought	 to	 you	 by:	 	
	 	

	
	

	
	

888-‐-‐-‐268-‐-‐-‐8770	 ·∙·∙	 904-‐-‐-‐278-‐-‐-‐0524	 -‐	 info@techwell.com	 -‐	 http://www.starcanada.techwell.com/	 	 	
	

	

	 	
	

Iryna	 Suprun	
	
Iryna	 started	 her	 career	 as	 a	 software	 engineer	 in	 2004	 in	 Ukraine,	 where	 she	 was	
born.	 She	 received	 her	 master’s	 degree	 in	 computer	 science	 in	 2006,	 and	 �㈠〰‷�
�敢慧���楦獲⁴潰楳楴湯愠�畱�瑩⁹��獹�匠��浥楡���� �映�獵��湯
����捥浯��獵牴⁹��整瑳��敲�琭浩����捩����瑳浥����摯捵�
�捵����愠��瀠慬晴牯�潦�桴��潔敍����汰捩���吠�礠慥獲愠� ��
�楣��瑩眠��浩�潴�祲�浯�楨杮渠睥愠��癯����敔档 桓 �獩瀠敲�瑮�

愠�⁁ 牡档瑩捥⁴ 畢�楤杮愠�浯����浡睥牯獫愠���敬�瑮� �整瑳� ���

�� ��浯�牣�档 ���礠慥獲��� ��瑳��慣湮瑯�潴⁰整瑳������獹
��祲搠�漠�瑩��圀⬴��慶据��楲据灩敬�景��吠�楴杮簠�牡⁴༱�桗�礠
畯��整�楲�愠灰楬慣楴湯��潭�杮映��潭潮楬桴捩��業牣獯��散�牡档
瑩捥畴敲 業牧�������楴杮愠灰�� ⱨ搠�� Ɱ 愠�映慲�����戠�畱
瑩��甠��慴楫杮 桔獩�瑮��楴�眠牯獫潨⁰ 楷��瑮�畤散礠畯���⁷ 摡慶据

��捥湨煩敵 �� ��楳湧瀠�整湲 �� �整� ��⁵ 潨⁷ 潴戠敲歡搠��慬 杲ⱥ 映慬祫

�⁉ 整瑳 ��潴焠極正愠��浩汰 �偁⁉ 整瑳 ��牡� 牓癩�慴慶眠����礠畯瀠慲
瑣捩� 慨��湯�灸��据�湯瀠敲敦牲�搠���慰��	

Destroying the Horcruxes of
Full-Stack Automation

Iryna Suprun

UI

API #1

Real Time
Processing system

Spark Jobs

Databases

API #2

Reporting System

Kafka

Automation Framework System Under Test
ACCIO, BUGS!

API

Reporting

Tests

Other helping
modules and tools

● Complex system
● Requires constant investment of time and resources
● Well designed and architectured
● Set of tools and language are carefully selected
● Has a lot of features to fit the needs of two or more agile

teams that use it
● Works for multiple teams and technologies

Full-stack Automation Framework is
like a magic spell:

● Low rate of adoption, people just don't want to use it
● Low ROI
● Number of automated tests is not increasing
● Quality is not improved
● Nobody trusts test results

Sometimes magic does not work

Is the soul of framework cursed?
We need to find and destroy the Horcruxes!

Automation Framework is a Software

Soul: Quality Attributes

1. Reliability
2. Usability
3. Communication
4. Test Data
5. Portability
6. Reporting
7. Integration

very specific requirements

Body: Functionality

1. Test Runner
2. Test Statements, Classes and Objects
3. Asserts
4. Logging
5. Helpers...

To be alive everything must have a soul !!!

Deadly Nagini’s Bite: no trust

Test Automation Framework is like a medical software. Its goal is to provide insights on how healthy
the system under test is. We all know that flaky tests are bad, but what about framework itself?

- Will you trust the medical device that crashes time to time?
- Will you trust the medical software that was not thoroughly tested?
- Will you trust the medical software that gives you different results after update?
- Will you use technology that was only tested on mice, and never on people?
- Will you use application to monitor your heart if it has bugs?

Reliability, Robustness

- Test Framework should be TESTED. Bugs in test framework sometimes have bigger impact
on quality than bugs in software code. Unit tests; functional tests; new framework old tests
and old code

- Code Reviews
- Are you sure that CI/CD is what your automation framework needs?
- Invest into robustness. Think about possible scenarios that can cause crashes.
- Handle Exceptions!

How to heal?

● I need to spend two hours to install it, for this I need to
download 10 dependencies and install very old version of
MySQL. Installation instruction has 20 steps.

● I need two weeks to learn how to add new tests.
● I cannot run test where I want when I want.
● I cannot easily select tests I want to run
● It is slow!
● Updating tests is the pain in the …
● Errors that give me no insights what I did wrong

Salazar Slytherin’s Locket: I hate it!
When you build automation framework did you think about users? Does your framework act like Salazar
Slytherin’s Locket and brings the worst emotion?

● Installation and initial setup should be as easy as possible. Take care about dependencies. Use
containers technologies if needed.

● Simplify adding new tests. Use templates, examples.
● Where possible use tools and languages available on the market, not internal ones.
● Make sure that if user makes a mistake the error messages are crystal clear and provide full

information about what had happened and how to fix it.
● Easy to pick and choose any subset of tests to execute (tip - use tags)
● Updating tests should be easy: use code design patterns, make sure that there is no code

copy-paste, follow clean code practices
● Invest in speed: parallelize, find bottlenecks

Salazar Slytherin’s Locket: take it off

Tom Riddle’s Diary: broken communication
channels

● Only selected group of people knows about changes in the framework

● Documentation for testing framework is missing, outdated or simply is not clear enough

● Non-backward compatible changes that require updating the tests were communicated last

minute.

● New version was deployed somewhere and nobody got notified about it

● There are no release notes

Tom Riddle’s Diary: be clear

● It is a software! So follow proper release cycle. Prepare Release Notes

● Communicate all non-backward compatible changes

● Invest in user documentation!

● Proper communication of environments upgrade

Marvolo Gaunt’s Ring - powerful curse of test data

● Generating test data takes forever
● System’s under test UI is used to generate test data
● Automation execution corrupts data in database
● It is not possible to distinguish generated data for different tests runs
● Test data is created manually
● Scripts use data in preset database and assume that it exists and it’s good
● Data cleanup is not automated

Marvolo Gaunt’s Ring - break the curse

● Framework provides tooling for test data creation.
● Do not use UI to create test data
● Do not assume that some data exists
● Make sure that framework provides ability to distinguish between data created for different

test runs (unique ids, time stamps, build number)
● Do cleanup but only when needed.
● Make sure that tests are not corrupting existing data (if it’s required by test - restore it)

Hufflepuff’s cup - can I steal it?

Jack uses Fedora, Mary uses MacOS, Jon has Windows 10, and our test environments are
AWS/google cloud with Red Hat.

● Users should be able to run tests on their machines, in QA environment, in build
pipeline….EVERYWHERE!

Hufflepuff’s cup - can I steale it?

● Developers and Testers should be able to run the framework on
Linux/Windows/MacOS. It might require taking care about file location, installation
process

● Test it on different systems
● Use containerized solutions

Rowena Ravenclaw's Diadem - granted wisdom
Why do we even run automated tests?

Reports are our main source of information about tests execution.
● Are errors clear?
● Do we need to rerun test manually to understand why it fails?
● Where are the screenshots?
● Are test failures cryptic? “The test failed”
● Are there runtime exceptions without proper error messages?
● What about test itself? Can we clearly see what this test was verifying? What was

the step? Where is test documentation?

To check that functionality covered by automation still works as expected.

Rowena Ravenclaw's Diadem -granted wisdom
1. Reporting is one of the most important parts of the

framework.
2. When test fails we need to be able to get all information

about failure from the report.
3. Make sure that all errors are as informative as they can

be.
4. Different levels of reporting for different consumers.
5. It should be crystal clear what functionality test verifies,

what is the step it failed at, what was the input data.
6. Failed test and passed test should have different level of

logs, and details in reports.
7. Clear test stats - how many tests were executed,

pass/fail numbers, run time.

Harry Potter - center of it all

Can you integrate your framework into the CI/CD pipeline?
Can it easily be done or does it take 5 engineers and 2 weeks?

Can you easily spin up environment for tests to run?
Where are reports?

Do you fail the build based on the test results?
At what point do you run which tests?

Harry Potter - integration point

● You need to consider how you integrate test execution into CI/CD pipeline on the

planning stage of framework

● Keep in mind that CI/CD tool can be changed

● Automation framework itself should not require complex setup

● Invest in convenient and easy to use automation framework CLI

● Will tests be executed in on-demand environment or preset environment?

On-demand requires more time to spin-up. How much time you want to wait each

build? Deploy?

Q&A

