
SUMMER 2017

Lessons Learned
in Cross-Platform
Development

10
YOU MAY NOT BE AGILE
10 things you must do to claim the
benefits of transitioning to agile

THINKING UPSIDE DOWN
Motivate your team to even greater
levels of achievement

OCT. 1–6, 2017
ANAHEIM, CA
CL ICK HERE FOR DETA ILS

https://well.tc/wche

http://www.qmetry.com/free-trial

https://smartbear.com/lp/ready-api/free-trial/?sr=bswmag&md=ad

Volume 19, Issue 3
SUMMER 2017

Better Software magazine brings you the hands-on, knowledge-building information you need to run smarter projects and deliver better
products that win in the marketplace and positively affect the bottom line. Subscribe today at BetterSoftware.com or call 904.278.0524.

06	 Mark Your Calendar

07	 Editor's Note

08	 Contributors

12	 Interview with an Expert

43	 TechWell Insights

47	 Ad Index

DepartmentsColumns

Features

Achieving Continuous
Improvement and Innovation
in Software
There is tremendous pressure on
software development teams to deliver
software faster, better, and cheaper.
Quality engineering with a focus on
innovation is the answer. by Mike Sowers

You Get What You Tolerate
We’ve all worked with a talented
developer who can be a frustrating
challenge to manage. First-time
managers may unknowingly encourage
bad behavior. There are several
innovative ways to resolve the situation.
by Andy Kaufman

10 Things You Must Do to
Become Truly Agile
Agile is not a state of doing; it’s a state
of being. Adopting business models on
value and learning how to make teams
autonomous are both necessary steps
to reap the benefit of agility.
by Jim Schiel

The Power of Thinking Upside
Down
Software developers can become
bogged down trying to keep up with
agile process and procedures. Get better
results by rethinking your approach to
balancing focus, agility, management,
and testing. by Paul E. McMahon

How Technology Is Changing
the Way We Learn
Modern technologies like virtual reality,
cloud-based systems, and measurement
of content have disrupted how we learn.
Standards have evolved to improve how
learning material can be published to
any device. by Troy Tolle

09 TECHNICALLY SPEAKING 45 CAREER DEVELOPMENT

INSIDE

3024 38

16

10 Lessons Learned
in Cross-Platform
Development
Building an app for a single
platform is difficult, but designing,
implementing, and testing an
app targeting multiple operating
system platforms can be next to
impossible. The secret balances
upfront design with customer
feedback. by Dewey Hou

On the Cover

B E T T E R S O F T W A R E T e c h W e l l . c o m 	 5

http://BetterSoftware.com
http://techwell.com

Helping organizations worldwide improve their skills, practices,
and knowledge in software development and testing.

Cutting-edge concepts, practical solutions, and today’s most relevant topics.
TechWell brings you face to face with the best speakers, networking, and ideas.

Sept. 12–14, 2017
Philadelphia, PA

Oct. 24–26, 2017
Washington, DC

Nov. 14–16, 2017
San Jose, CA

Aug. 7–11, 2017
Virtual Classroom

Aug. 15–17, 2017
Detroit, MI

Aug. 29–31, 2017
Denver, CO

Sept. 12–14, 2017
Atlanta, GA

Sept. 12–14, 2017
Philadelphia, PA

Sept. 12–14, 2017
Tampa, FL

Sept. 19–21, 2017
Boston, MA

Sept. 26–28, 2017
Dallas, TX

November 5–10, 2017
Orlando, FL

October 15–20, 2017
Toronto, Canada

October 1–6, 2017
Anaheim, CA

Sept. 12–15, 2017
Philadelphia, PA

Sept. 19–22, 2017
Seattle, WA

Sept. 26–29, 2017
Dallas, TX

Oct. 24–27, 2017
Washington, DC

Conferences

Mobile Testing Training Week
http://www.sqetraining.com/mobile-week

Software Tester Certification—Foundation Level
http://www.sqetraining.com/certification

Agile Testing Training Week
http://www.sqetraining.com/agile-week

M A R K YO U R C A L E N D A R

SQE TRAINING
A T E C H W E L L C O M P A N Y

events

June 3–8, 2018
Las Vegas, NV

LEARN MORE

April 29–May 4, 2018
Orlando, FL

LEARN MORE

LEARN MORE

LEARN MORE

LEARN MORE

B E T T E R S O F T W A R E T e c h W e l l . c o m 	 6

http://www.sqetraining.com/mobile-week
http://www.sqetraining.com/certification
http://www.sqetraining.com/agile-week
https://adc-bsc-devops-west.techwell.com
https://stareast.techwell.com
https://starwest.techwell.com/
https://bsceast.techwell.com/
https://starcanada.techwell.com/
http://techwell.com

PUBLISHER
TechWell Corporation

PRESIDENT/CEO
Wayne Middleton

DIRECTOR OF PUBLISHING
Heather Shanholtzer

Editorial

BETTER SOFTWARE EDITOR
Ken Whitaker
ONLINE EDITORS
Josiah Renaudin
Beth Romanik
PRODUCTION COORDINATOR
Donna Handforth

Design

CREATIVE DIRECTOR
Jamie Borders
jborders.com

Advertising

SALES CONSULTANTS
Daryll Paiva
Kim Trott
PRODUCTION COORDINATOR
Alex Dinney

Marketing

MARKETING MANAGER
Cristy Bird
MARKETING ASSISTANT
Allison Scholz

Ken Whitaker
kwhitaker@techwell.com
Twitter: @Software_Maniac

EDITORS:
editors@bettersoftware.com

SUBSCRIBER SERVICES:
info@bettersoftware.com
Phone: 904.278.0524,
888.268.8770
Fax: 904.278.4380

ADDRESS:
Better Software magazine
TechWell Corporation
350 Corporate Way, Ste. 400
Orange Park, FL 32073

CONTACT US

E D I T O R ’ S N O T E

Rethinking How Software Is Developed

This Better Software issue will inspire you to rethink how software development should be ap-

proached. Building software for multiple platforms at the same time has always been difficult.

Our cover story by Dewey Hou, “10 Lessons Learned in Cross-Platform Development,” will re-

move the mystery of how to do it—and Dewey should know. He leads the development of some

amazing Windows and macOS commercial software products.

Both Better Software magazine and TechWell Corporation embrace the benefits of agile software

development. However, most of us have learned the hard way that “being agile” is never enough.

That is why I’m so impressed with Jim Schiel’s approach to agility in “10 Things You Must Do to

Become Truly Agile.” And Paul McMahon’s “The Power of Thinking Upside Down” may be the

inspiration you need to motivate your team to greater levels of achievement.

The trend for online learning is augmenting, if not replacing, the traditional classroom. So how

exactly do cloud-based courseware solutions work? Troy Tolle, an early innovator in cloud-

based software development, explains it all in “How Technology Is Changing the Way We Learn.”

The market we serve demands software delivery to be faster, better, and cheaper. Mike Sowers

has some words of wisdom you won’t want to miss in “Achieving Continuous Improvement and

Innovation in Software.” In every issue, we include an article on management or soft skills de-

velopment. What should you do when one employee impacts the effectiveness of an entire team?

Software managers are going to want to read Andy Kaufman’s “You Get What You Tolerate.”

We value your feedback. Let us and our authors know what you think of the articles by leaving

your comments. I hope you enjoy reading this issue as much as we enjoy working with these

wonderful authors.

F O L L O W U S

B E T T E R S O F T W A R E T e c h W e l l . c o m 	 7

http://jborders.com
mailto:kwhitaker@techwell.com
https://twitter.com/Software_Maniac
mailto:editors@bettersoftware.com
mailto:info@bettersoftware.com
http://techwell.com
https://twitter.com/TechWell
https://www.facebook.com/TechWellCorp
https://plus.google.com/u/0/+Techwell/posts
http://techwell.com

Dewey Hou has worked as a software engineer, project manager, and technical product manager prior to his
current role leading product development at TechSmith. Dewey works with teams to improve software devel-
opment practices in quality assurance, user experience design, technical documentation, project management,
and build/release engineering. You can contact Dewey at d.hou@techsmith.com.

Andy Kaufman, the voice of the Institute for Leadership Excellence & Development, Inc., helps organizations
around the world improve their ability to deliver projects and lead teams. He has more than twenty-five years
of software development experience and is the author of three books. As the host of The People and Projects
Podcast, Andy provides insights that help listeners lead people to deliver projects. Andy can be reached at
andy@i-leadonline.com.

Paul E. McMahon is principal consultant at PEM Systems, where he coaches teams on practical agility and
process maturity approaches. Paul released his fifth book, It’s All Upside Down: What I’ve Learned about Software
Development and Why It Seems Opposite to Everything I Was Taught. It should come as no surprise that his book,
like his Better Software article, includes true upside-down success stories. When he isn’t coaching, you can find
Paul running (including the completion of twelve Boston Marathons). Reach Paul at pemcmahon@acm.org.

Josiah Renaudin is a longtime freelancer in the tech industry and is now a web-content producer and writer
for TechWell, StickyMinds.com, and Better Software magazine. He wrote for popular video game journalism
websites like GameSpot, IGN, and Paste Magazine, and now acts as an editor for an indie project published
by Sony Santa Monica. Josiah has been immersed in games since he was young, but more than anything, he
enjoys covering the tech industry at large. Contact Josiah at jrenaudin@techwell.com.

With more than thirty-two years of experience, Jim Schiel has worked in software development in highly regu-
lated industries. Jim transitioned Siemens Medical, an organization of more than a thousand developers, from
waterfall to agile practices. The author of several books, including Enterprise-Scale Agile Software Development,
he helps transform organizations worldwide to improve development productivity and product quality. Reach
Jim at jim@artisansoftwareconsulting.com.

Mike Sowers has more than twenty-five years of practical experience as a quality and test leader of internation-
ally distributed test teams across multiple industries. He is a senior consultant who works with large and small
organizations to improve their software development, testing, and delivery approaches. He has worked with com-
panies including Fidelity Investments, PepsiCo, FedEx, Southwest Airlines, Wells Fargo, and Lockheed to improve
software quality, reduce time to market, and decrease costs. Reach Mike at msowers@techwell.com.

Troy Tolle is a leading visionary and champion of cloud computing, used in redefining the future of learning.
After leaving academia, Troy cofounded Infinity Learning Solutions and built its DigitalChalk flagship product.
As a thought leader in enterprise technology, he is frequently called upon by cloud providers for technical
guidance. Troy speaks at both public and private gatherings on various topics including education, cloud com-
puting, and leadership. Contact Troy at ttolle@digitalchalk.com.

C O N T R I B U T O R S

B E T T E R S O F T W A R E T e c h W e l l . c o m 	 8

mailto:d.hou@techsmith.com
mailto:andy@i-leadonline.com
mailto:pemcmahon@acm.org
mailto:jrenaudin@techwell.com
mailto:jim@artisansoftwareconsulting.com
mailto:msowers@techwell.com
mailto:ttolle@digitalchalk.com
http://techwell.com

TECHNICALLY SPEAKING

There is no end to the challenges we face in delivering better

quality software quickly to market at reasonable costs. We must

secure a firm understanding of user needs, select the appropriate

technical design, and develop and test its functionality—all while

addressing stated and implied nonfunctional characteristics, striv-

ing to develop the right code, employing the latest stable technolo-

gy, and supporting products that work on multiple platforms. The

process depends on retaining the best team with the technical skill

sets necessary to get it all done.

Getting Software Done Right
My belief is that getting software done right is a societal re-

quirement. [1] The deployment of software has reached utility sta-

tus—we rely on it just as we rely on water

and electricity. Yet many of the organiza-

tions I work with at conference events, in

training sessions, and during mentoring

and coaching engagements continue to

struggle to deliver software with the right

functionality, the right level of quality, at

the right time, and at the right cost.

We’ve made some great progress

evolving our design, development, test-

ing, and delivery methods. These include:

•	 Improving technical skill sets

•	 Employing new or improved programming languages

•	 Creating new integrated development environments

•	 Implementing testing tools (both commercial and open source)

•	 Using DevOps approaches, including virtualization, continu-

ous integration, and continuous deployment

But even with these successes, I think there are ways the soft-

ware community can more consistently develop and deliver func-

tionally sufficient software to our users quickly and cost-effectively.

Delivering Software Faster, Better, Cheaper
Here are seven approaches that should be the catalyst for bet-

ter, faster, and cheaper software development. None are to be tak-

en in isolation but knitted together, as appropriate.

Automate with intention: How do we produce better cars

more quickly? We automate many parts of the design and manu-

facturing processes. During a TechWell STAR software testing con-

ference keynote, industry technology analyst Theresa Lanowitz

suggested that the next opportunity in delivering better software

is automating across the entire lifecycle. I interpret this to mean

not just a random, uncoordinated approach to automation, but an

orchestrated, integrated, and end-to-end automation approach.

The opportunities for automation span the entire value chain.

All components associated with DevOps

allow us to better manage risk and accel-

erate features to market.

Employ modeling and prototyping:
A picture is worth many user stories. Pro-

totypes are an excellent way to encourage

feedback to determine whether features

meet user needs. Collaborative modeling

tools, such as sticky notes, and comput-

er-aided tools, such as mind maps, UML,

design patterns, business process model-

ing, and agile model-driven development

(AMDD), help the entire team and the stakeholders become aligned.

Embrace continuous quality engineering: Delivering better

software with less rework demands built-in quality engineering

practices at every step. Continuous improvement advocates us-

ing the plan-do-check-act cycle. Creating the tests before the code

is created in test-driven development is a beneficial approach

to ensuring continuous quality. The same is true for acceptance

test-driven development, behavior-driven development, explor-

atory testing, and continuous testing.

Achieving Continuous
Improvement and
Innovation in Software
THERE ARE SEVEN KEY TIPS AND TECHNIQUES THAT CAN MAKE A HUGE DIFFERENCE IN
YOUR SOFTWARE DEVELOPMENT TEAM’S EFFICIENCY.
by Mike Sowers | msowers@techwell.com

One day, maybe we’ll be
able to just think about

some new software
capability and a machine

will develop, test, and
deploy it for us.

B E T T E R S O F T W A R E T e c h W e l l . c o m 	 9

mailto:msowers@techwell.com
http://techwell.com

TECHNICALLY SPEAKING

Beginning with product design, the team should always incor-

porate quality engineering practices. The whole team benefits by

emphasizing quality from concept to delivery.

Leverage business intelligence: The more information we

have, the better decisions we make. There is plenty of information

available about development practices and the products created

using these approaches as business intelligence capabilities ma-

ture. Pulling integrated information from multiple data sources

encourages a data-driven culture, resulting in better decisions.

Further, we have more information available on usage patterns,

user experiences, application stability, and application perfor-

mance operating in a variety of environments.

Think packaging, reuse, and integration: As product lines

mature, strategies such as consolidation, reuse, repurposing, and

higher levels of integration allow producers to remain competitive.

Wrapping up software in a complete file system with everything it

needs to run ensures that it will always run the same, regardless

of the environment.

Containers allow us to do just that, helping us isolate our code

from the operating environment. Repurposing proven code in-

creases productivity, improves quality, and reduces development

time. The aggregation of features, applications, or subsystems may

expand functionality, improve reliability, and drive down mainte-

nance costs, similar in scale to what the chip industry has achieved

in increasing hardware component densities.

Implement decomposition and virtualization: Decomposing

an application into small components encourages a more modu-

lar design that should allow multiple teams to work more inde-

pendently and smaller services to be more easily refactored. Em-

ulating the behavior of components still under development lets

others continue with development and testing.

Drive innovation: Most computer hardware provides the abil-

ity to self-test and report diagnostics. Using tools like JUnit, tests

can be created for software components, much like the basic input/

output system does when a PC powers up. Martin Fowler calls this

“simultaneously building a bug detector” while developing soft-

ware. [2] Extending this concept a bit further, how about software

smartbots constantly checking the health of computer services, ap-

plications, and systems?

Another opportunity to innovate is with automatic program-

ming. Rather than a developer programming a computer with a

specific set of instructions, machine learning offers a paradigm

shift, with the computer iteratively learning from data without be-

ing explicitly programmed to do so.

The Real Winner Is Software Development
Efficiency

Using any one of these approaches is beneficial, but taking

advantage of more than one provides more opportunity for im-

provement.

Let’s assume user experience is being monitored and analyzed

in production on each software feature of an enterprise software

app. We could leverage feature usage data to determine the prior-

ity of those features that should be enhanced first, or which auto-

mated acceptance tests to run during our work in process release.

One day, maybe we’ll be able to just think about some new software

capability and a machine will develop, test, and deploy it for us.

Until then, these approaches can help accelerate your journey

in delivering faster, better, and cheaper software.

REFERENCESCLICK FOR THIS STORY'S

TechWell is always looking for authors interested in getting their
thoughts published in Better Software, a leading online magazine focused
on the software development/IT industry. If you are interested in writing
articles on one of the following topics, please contact me directly:

I’m looking forward to hearing from you!

Ken Whitaker
Editor, Better Software magazine | kwhitaker@techwell.com

• Testing
• �Agile methodology
• DevOps

• �Project and people management
• Configuration management

WA N T E D ! A F E W G R E AT W R I T E R S

B E T T E R S O F T W A R E T e c h W e l l . c o m 	 10

http://www.stickyminds.com/sticky-note/references-222
mailto:kwhitaker@techwell.com
http://techwell.com

 void ITestModule.Run()
 {
Report.Log(ReportLevel.Info,
"Website", "Opening web site 'http://www.ranorex.

Report.Log(ReportLevel.Info,
"Mouse", "Mouse Le� Click at {X=10,Y=20}.", new RecordItemIndex(1));

Report.Log(ReportLevel.Info, "Keyboard", "Key sequence 'admin'.", new RecordItemIndex(2));

https://www.ranorex.com

Adam Auerbach
	Years in Industry: 	 17

	 Email: 	 Adam.Auerbach@lfg.com

	 Interviewed by: 	 Josiah Renaudin

	 Email: 	 jrenaudin@techwell.com

“When you start with testing,
it really creates energy
around this movement,
around what you’re doing in
quality, and then that propels
even further to the other
DevOps capabilities.”

“There still is manual
testing, but it’s going to be
more exploratory testing,
ad hoc testing. Having
dedicated manual testers is
going away.”

“The companies that have
embraced DevOps are making
a difference. They’re able to
spend more time on product
development and innovation,
and they don’t have to have
large groups that are only
operations focused.”

“It is unfair in some regards
that people are picking
on testing again, but by
embracing it, you really have an
opportunity to be the driving
force at your company for this
[DevOps] movement.”

“When you’re doing manual
testing, you’re becoming a
bottleneck, and then you’re
getting squeezed and pushed.”

“Testers have the opportunity to, instead of being at the tail end of a
process, to be there from the very beginning.”

“We have to have tools to be
able to procure our data in an
automated fashion that can be
hooked into our pipeline.”

Focus on flow. The

whole purpose of

DevOps is to be able

to deliver high-quality

software production

early and often.

I N T E R V I E W W I T H A N E X P E R T

CLICK HERE FOR THE
FULL INTERVIEW

B E T T E R S O F T W A R E T e c h W e l l . c o m 	 12

mailto:Adam.Auerbach@lfg.com
mailto:jrenaudin@techwell.com
https://well.tc/IWAE19-3

The wait for test
data is over.

GET OUT OF QUEUE

https://www.delphix.com/solutions/test-data-management

Your Name
Delegate

Nov. 5–10, 2017

Orlando, FL

Hilton Orlando

Lake Buena Vista

2017

BSCEAST.TECHWELL.COM

Benefit from a
custom week
of learning and
discovery through
all aspects of the
development
lifecycle with:

• Comprehensive
tutorials

• Exceptional
concurrent
sessions

• Inspiring keynotes

• Pre-conference
training and
certification
classes

• Networking
activities

• The Expo

• And more

*Discount valid on packages
over $600

Special Offer for
Better Software
Subscribers:
Register by
9/8/17 with
promo code
BSME to
save up to
an additional
$600 off*

WE LOOK FORWARD TO SEEING
YOU IN ORLANDO THIS FALL!

https://well.tc/wchp

Start a Free Trial Today at
www.qasymphony.com

WATERFALL, AGILE, OR DEVOPS?

YES.

QASymphony is the creator of qTest —
A more efficient software testing platform
that any team can use with any methodology.

Until now you’ve been forced to choose between either the same

old legacy tool from a QA dinosaur or a promising new tool from

some startup that can’t support enterprise-scale needs.

In the real world, you don’t have the luxury of choosing between

innovation and scale. That's why leading enterprises like Cisco,

Salesforce, Barclays and Amazon rely on qTest by QASymphony.

qTest helps hundreds of companies across the globe test smarter,

test seamlessly and test at scale. Finally, a testing solution built for

the real world.

HELLO, REAL WORLD™

https://www.qasymphony.com/?utm_campaign=Better%20Software%20Magazine%20Ad&utm_medium=Magazine%20Insert&utm_source=Better%20Software%20Magazine

10Lessons Learned
in Cross-Platform
Development
B Y D E W E Y H O U

B E T T E R S O F T W A R E T e c h W e l l . c o m 	 16

http://techwell.com

How Business Drives Development

LESSON 1: CONSIDER ECONOMIC FACTORS
BEFORE INVESTING

Originally, our app only ran on Windows. Supporting macOS

required us to justify the investment to executives. It’s a good idea

to detail both the business and customer-facing benefits for build-

ing an app on a new platform (see table 1).

You must validate the business economics before moving for-

ward. Expanding to a new platform such as macOS merely for

technology’s sake is not a justification.

Cross-platform development is a nonstarter if the project

doesn’t make business sense.

LESSON 2: ADD GUIDING PRINCIPLES TO
YOUR BUSINESS PLAN

Once you have the green light to develop apps for a new plat-

form, how similar should the apps be? In my experience, it is not

practical to require all features and functionality to be identical on

both platforms. There are always exceptions, so you better identi-

fy some guidelines. Without guiding principles, development costs

and timelines can quickly get out of control.

By defining requirements from a business perspective, you can

usually predict cross-platform business outcomes. Start by identi-

fying the areas of the app that require platform parity. Separate

these areas into priority levels, as shown in table 2.

It is hard work to vet feature requirements—and even more so

on two platforms.

The User Experience Influence

LESSON 3: LEVERAGE MULTIPLE
PLATFORMS TO TEST PROTOTYPES

Understanding user needs is critical to software development.

It is essential to come up with a user interface (UI) design that

meets users’ needs on both platforms.

help lead a team that is responsible for the development and

release of software apps for macOS and Windows. You might

assume it would be simple to share universally valuable les-

sons I learned on our journey of cross-platform development. This

isn’t an easy task and you can’t always guarantee a positive out-

come. It is difficult to design and build software apps for different

platforms.

There is always a risk that the cost of development won’t meet

return on investment goals or that the end-user dislikes how the

app works on their platform. Figure 1 shows screen captures of

our video-editing software, Camtasia, on Windows and on macOS.

These screen captures are a sample of many more you can view

on our website. [1]

As you can see, the same program can look different on a com-

puter running macOS versus a PC running Windows, and this pres-

ents challenges for a development team Most software companies

dedicate separate teams to work on each target operating system

platforms. This can be quite costly and isn’t the most efficient ap-

proach. After many twists and turns during the latest release of

our Camtasia app, several lessons emerged in the areas of busi-

ness, users, technology, people, and process.

I’d like to share some of what I’ve learned in developing soft-

ware applications for Windows and on macOS.

Figure 1: Windows and macOS user interface comparison

Multiplatform Benefits

Higher percentage of macOS users in future target market
segments

Project interoperability is becoming the norm with work groups
in corporate environments

License model can be simplified, allowing users to run either
version (Windows or macOS)

Multiplatform support is a competitive advantage in the market-
place

Reduce training costs for organizations

Table 1: Identification of cross-platform business benefits

B E T T E R S O F T W A R E T e c h W e l l . c o m 	 17

http://techwell.com

Our first version of Camtasia for macOS came years after the

first Windows version. As a result, it would not achieve parity from

the start. We took advantage of this fact and created an entirely

new design for macOS. Our goal was to make a better product, giv-

en years of lessons learned from the Windows version. This ap-

proach allows your development team and customers to discover

what works best.

Take advantage of the fact that you have two platform sand-

boxes to play in, and test UI designs. The design could leapfrog

ahead on macOS and gain validation before incorporating changes

on the Windows side. But introduce changes strategically, as exist-

ing customers find it difficult to accept drastic changes to the UI.

Internally, platform biases will be another significant factor

during UI design debates. This phased delivery approach takes

time, and upper management and your customers must recognize

that cross-platform parity isn’t going to happen overnight.

Test out designs on one platform to help resolve these disputes

and arrive at the best cross-platform design.

LESSON 4: PROCEED WITH CAUTION USING
CROSS-PLATFORM UI TOOLKITS

Using a cross-platform UI toolkit seems like a no-brainer. How-

ever, the promise of write-once-run-anywhere comes at a cost.

We learned about some issues only after moving ahead with

one such toolkit. A few of the downsides included suboptimal user

experience, decreased development velocity, poor performance,

and inability to leverage the latest platform innovations. Using a

toolkit might have been great for our developers, but these nega-

tives would not have been accepted by our customers. If our macOS

app doesn’t appeal to the Mac users, they’ll use something else.

Creating a superior user experience was central to our custom-

er value proposition. The UI toolkit didn’t deliver the look or feel

that we wanted. It also didn’t provide the level of performance

needed by a video-editing app. There was an issue not only with

learning the toolkit but also with finding developers experienced

in programming with that toolkit.

As a result, development velocity slowed dramatically. The

learning curve was just too great. To compound the issue, devel-

opers still had to work with the details of the native Windows or

macOS platforms.

You are dependent on the release schedule of a third-party tool-

kit for critical bug fixes and support for new features. We found it

frustrating to attempt to leverage new platform-specific features.

For example, Windows Presentation Foundation (WPF) would not

have been available with a third-party toolkit.

What should have been a positive ended up putting us at a

competitive and market disadvantage. In the end, we decided to

abandon the UI toolkit.

Of course, these issues may not apply to your situation. But for

us, native platform development for the UI became necessary.

LESSON 5: BE PRODUCT-CENTRIC INSTEAD
OF PLATFORM-SPECIFIC

Balancing platform-specific conventions and platform indepen-

dence has its challenges. It doesn’t pay to develop a platform-inde-

pendent app that is viewed as not usable or inconsistent to what a

Windows or macOS user expects.

When weighing your options in cross-platform development,

enumerate the differences that will be problematic for the app’s

ability to be platform-independent (see table 3).

Priority Level Feature Functionality

Priority 1: Strict parity Data model/project compatibility You must always be able to open a project created by the
app running on the other platform.

Priority 2: Strict parity with some
exceptions Rendering/pixel-level parity The content of a project looks/renders the same on the

other platform.

Priority 3: Parity when possible User interface parity
The apps share the same look and layout. The Windows
user should feel comfortable using the macOS app (and vice
versa).

Priority 4: No parity Platform-dependent look and feel Adhere to platform-specific conventions and norms or ig-
nore if it doesn’t make business or technical sense.

Table 2: Guiding principles based on cross-platform business priorities

B E T T E R S O F T W A R E T e c h W e l l . c o m 	 18

http://techwell.com

Once you have identified platform differences, establish a con-

sistent way your app will handle them. In some cases, staying true

to platform-specific conventions makes sense.

Users who are familiar with the platform will expect to find the

functionality available. In other situations, take an approach that

will retain similar functionality but can be implemented in a way

that works well for your app. For example, we created a cross-plat-

form solution for presenting caption text that renders identically

on both platforms.

We kept to our guidelines by creating an app and interface that

was unique to itself rather than rigidly following a specific plat-

form.

Selecting the Best Technology
Selecting the right tools for the job is another factor in a suc-

cessful cross-platform product development effort. Optimal choic-

es enable great possibilities, while suboptimal ones create techni-

cal debt that hinders your development.

LESSON 6: SELECT A CROSS-PLATFORM
LANGUAGE THAT FITS YOUR SITUATION

Choosing a cross-platform programming language is key. It

is an essential practice to maximize the amount of code you can

share between different platforms. Language selection depends on

business needs, the type of app, capabilities the language must pro-

vide, existing codebase, and your development team’s skills.

Our app manipulates large multimedia files and requires

low-level system access to hardware and the graphics processing

unit (GPU) in order to achieve a high degree of performance.

Due to our UI requirements, we knew our app would use

cross-platform code and platform-specific code. The team also was

already very familiar with C++, so given these factors, it become

our cross-platform language of choice.

Cross-platform code must take a least common denominator

approach, including only functionality that exists on both plat-

forms. For us, it must be standard C++ 14 or earlier to avoid C++

compiler differences. Even then, occasionally problems do come

up. As a rule, the newer features of C++ tend to be less compatible

than, say, C++ 98 code. Frustrating as it may sound, you don’t learn

which features may result in compiler compatibility issues until

you try to share code. Compatibility issues can be troublesome to

deal with, as the following for each loops shows.

MSVC allows the syntax:

	 for each (auto item in container)

Whereas, standard C++ requires this syntax:

	 for (auto item : container)

Consequently, compiler syntax issues often result in writing

more complex shared code. During development, we ran into com-

piler interoperability issues that we had to work around.

In order for the unmanaged C++ code to talk with the managed

C# runtime under Windows, there was a need for an interop layer.

Writing the interop layer slowed down developers and introduced

performance issues that should have been identified sooner in our

development cycle.

Fortunately, we were able to focus developers specifically on

this issue and were able to build out our interop layer and tools.

There are no such interoperability issues between C++ and Objec-

tive-C on macOS.

Area Windows macOS

File Support

MOV files not supported
WMV files supported
Vector graphics resizing in PDFs not supported
MP4 file decoding differences (ex: different lengths
reported, which causes project compatibility issues)

MOV files supported
WMV files not supported
Vector graphics in PDF can resize to any
dimension
MP4 file decoding differences

User Interface shortcuts
Favors right-click functionality
Copy, Paste: Ctrl+C, Ctrl+V
Product-specific shortcuts are the same

Favors keyboard shortcuts
Copy, Paste: Cmd+C, Cmd+V
Product-specific shortcuts are the same

Tooltip support Large, verbose tooltips Minimal text allowed

Text and naming conventions Sentence case Title case

Typeface/Fonts Support of Windows typefaces and fonts. Text also
renders differently on both platforms

Support of macOS typefaces and fonts. Text
also renders differently on both platforms

Media effects Better support for video transitions Better support for video and audio effects

Table 3: Identification of platform differences impacting app portability

“Language selection depends on
business needs, the type of app,
capabilities the language must
provide, existing codebase, and
your development team’s skills.”

B E T T E R S O F T W A R E T e c h W e l l . c o m 	 19

http://techwell.com

LESSON 7: USE A SINGLE SOURCE
CONTROL SYSTEM TO SHARE CODE
BETWEEN PLATFORMS

This lesson seems obvious, but we started from the Windows

platform and had significant investments in Windows-specific

tools. Keeping software changes backed up as versions has always

been a high priority.

Ten years ago when we started macOS development, there

wasn’t a great cross-platform choice that met the needs of both

Windows and macOS developers. That resulted in using a sepa-

rate source control system for each platform for several years. It

became a nightmare to synchronize the sharing of code between

platforms.

The solution came over time by moving all our code to Git. It

was a significant effort and cost to migrate our code, as was train-

ing the staff to manage source control. If you can, keep cross-plat-

form code in a single separate repository. For code that changes of-

ten, reference this repository as Git submodules under the macOS

and Windows codebases. Use NuGet packages for code that chang-

es infrequently. Development teams on both platforms can check

out, modify, and merge code with ease. Utilizing a single source

code control system significantly improves overall team velocity.

LESSON 8: MAINTAIN A SOUND
ARCHITECTURE

You become aware of the complexity of cross-platform de-

velopment once you begin making decisions about how to write

shared code. The development team needs to be intentional in

creating and maintaining a solid architecture. Early on, we in-

vested in research spikes to learn and experiment with the best

ways to structure the code.

In creating a sound architecture, I strongly sug-

gest starting with the business goals discussed in

lesson 2. Business outcomes should always drive

an app’s architecture. Use proven design patterns,

such as model-view-controller (MVC), and a good

data model to support cross-platform sharing of

project files.

Lay a good foundation from the beginning to

keep your app resilient and extensible years into

the future.

But creating a solid architecture is not enough.

The other requirement is maintaining its integrity.

To do this, set up automated unit tests around all

shared library code. It should be a hard rule that no

new code can be checked in without updating and

maintaining these tests. Unit tests should keep the

data model bug-free.

A related side lesson is to focus on performance

testing up front. When we were developing Camta-

sia, the Windows version was rebuilt in WPF, and

due to implementation issues, our UI couldn’t keep

up. Profile code to establish a baseline of UI responsiveness. This

helps catch performance issues early before code complexity in-

creases over the course of development.

People and Process
For anything to succeed, you need smart, motivated people

who have the right capabilities and experience. Technology choic-

es often depend on the skills your people have.

LESSON 9: PRESERVE KNOWLEDGE
CONTINUITY ON YOUR TEAM

Creating a team that can withstand disruptions is no small feat.

Hiring and retaining top talent is only the first step. Staff needs

to embody the positive culture you want on your team. The will-

ingness to share knowledge and help others for the good of the

product and customer.

One approach that worked for our department was to put Win-

dows and macOS software engineers on a single product team.

This increased cross-platform collaboration and encouraged more

teamwork. Allow the larger product team to self-organize into

smaller pods focused on getting specific work done. When devel-

oping a feature that needs to exist on both platforms, pair one Win-

dows and one macOS developer.

“Business outcomes should always
drive an app’s architecture. Lay a
good foundation from the beginning
to keep your app resilient and
extensible years into the future.”

B E T T E R S O F T W A R E T e c h W e l l . c o m 	 20

http://techwell.com

This yields better code and better product decisions. Avoid

excessive churn of the pod team members by keeping the teams

together longer. While a certain amount of change is healthy, it is

a mistake to move people like interchangeable cogs. Continuity of

staff will preserve product development knowledge.

LESSON 10: LEADERSHIP AND
ACCOUNTABILITY ARE MUST-HAVES

Product development is often contentious due to passionate

team members debating what they think is best. On a cross-plat-

form project, discussions can escalate into arguments due to plat-

form bias. Leaders are responsible for creating an environment

where teams can do their best work.

Create clear accountability for specific individuals to resolve

these issues. Define and establish leadership roles on a team to mit-

igate the inevitable staff changes over the course of the product re-

lease, as shown in table 4. You will cause unnecessary turmoil if you

lack any of these leads during critical periods in the product release.

Defining a lead role is not about a new job title, but about mak-

ing an impact on the success of a project. For example, a technical

lead for shared cross-platform code can guide the team to prevent

data model corruption. Without that lead, it is likely that poor de-

cisions—or no decisions at all—would be made. The UX lead role is

particularly challenging because detailed knowledge of both plat-

forms and user needs are essential.

Adopting Lessons Learned
Your experience in cross-platform development will probably

be dramatically different from mine, but these lessons should hold

true for any project. I wish you luck as you embark on your jour-

ney in developing for multiple platforms.

d.hou@techsmith.com

REFERENCESCLICK FOR THIS STORY'S

Lead Role Who Usually Fills
the Role Area of Accountability

Product lead Technical product
manager

Owns decisions on fea-
ture backlog priority and
requirements

Technical lead Senior software
engineer

Owns decisions on
implementation. Each
platform should have a
technical lead

Delivery lead Project manager Owns decisions on team
process and schedule

UX lead Senior UX designer
Owns decisions on the
overall user experience
across both platforms

Table 4: Leadership roles on a development team

N E W S L E T T E R S
F O R E V E R Y N E E D !

Want the latest and greatest content
delivered to your inbox? We have a

newsletter for you!

A T E C H W E L L C O M M U N I T Y

AgileConnection To Go covers all things agile.

DEV PS
B R O U G H T T O Y O U B Y C M C R O S S R O A D S

DevOps To Go delivers new and relevent
DevOps content from CMCrossroads

every month.

StickyMinds To Go sends you a weekly
listing of all the new testing articles

added to StickyMinds.

And, last but not least, TechWell Insights
features the latest stories from conference

speakers, SQE Training partners, and
other industry voices.

Visit AgileConnection.com, CMCrossroads.com,
StickyMinds.com, or TechWell.com to sign up

for our newsletters.

B E T T E R S O F T W A R E T e c h W e l l . c o m 	 21

mailto:d.hou@techsmith.com
http://www.stickyminds.com/sticky-note/references-223
http://AgileConnection.com
http://CMCrossroads.com
http://StickyMinds.com
https://www.techwell.com/techwell-insights
http://www.agileconnection.com
http://www.CMCrossroads.com
http://www.stickyminds.com
https://www.techwell.com/techwell-insights
http://techwell.com

Find out how Sauce Labs
can accelerate your testing
to the speed of awesome.

For a demo, please visit saucelabs.com/demo
Email sales@saucelabs.com or call (855) 677-0011 to learn more.

B E F O R E S A U C E L A B S
Devices. Delays. Despair.

A F T E R S A U C E L A B S
Automated. Accelerated. Awesome.

A brief history of web and mobile app testing.

https://saucelabs.com

Is your legacy testing
platform holding you back

from Agile & DevOps success?

Tricentis Tosca
It’s different. It works. We’ll prove it.

tricentis.com/better-software
FREE
TRIAL

http://tricentis.com/better-software

THE POWER
OF THINKING
UPSIDE DOWN

Paul E.
McMahon

have found that the best
way to coach software
development teams may

appear to be the opposite of
many well-established, long-
held software engineering
principles. What works in
practice often isn’t what we
have been taught.

This real story demon-
strates what I recently
discovered works for success-
ful software development
teams—even though it may
appear to be “upside down”
from traditional thinking.

Defining New Processes Up Front Is Old
News

Most of us have been taught to define processes and prove

them in a pilot environment before using them on a real project.

This approach makes sure teams use these processes in a repeat-

able way before improving them.

This makes sense in theory, but there’s a better way. What if

you spent very little time defining a process before trying it out

on a real project? This is not the way most of us do it, yet I have

successfully worked with multiple software development teams to

evolve into using new processes during development.

This is not meant to suggest that you shouldn’t define your pro-

cesses and train your people before asking them to use the pro-

cesses; nor is it meant to suggest you should try out completely

unproven ideas on critical projects. Instead, spending very little

time defining processes before asking teams to use them might

have hidden benefits.

Using this upside-down thinking might not be as risky as you

might imagine.

Focus on Strengths and Ignore
Weaknesses

Software development organizations usually employ standard

processes and procedures. Some can be viewed as strengths and

others as weaknesses. Examples of strengths might be the way an

organization involves its stakeholders before a product delivery

or the way it proactively manages risks. Examples of weaknesses

might be a regression test practice that fails to cover critical prod-

uct functionality, or an inadequate peer review practice. When an

organization needs help, outside consultants can be used to help

address those specific weaknesses.

There’s a better upside down approach. Rather than focusing

on a client’s weaknesses, it is often a better idea to start a consult-

ing engagement by ignoring known weaknesses. Instead, take the

time to understand an organization’s strengths. There are two rea-

sons why this might make sense:

•	 It is very easy to inadvertently damage an organization’s

strengths when implementing solutions to weaknesses. Learn

what those strengths are first.

•	 Understanding an organization’s strengths can often lead to

the best solution to fix weaknesses.

If you take the time to look for strengths in an organization be-

fore attacking known weaknesses, you could find at least one proj-

ect that is already working to solve that weakness. This is because

any weakness that is an immediate risk to one project is probably

equally dangerous to other projects.

Working with developers who are motivated to solve a prob-

lem gets you past what often turns out to be the biggest obstacle

to a lasting solution. The rest of an organization is more likely to

accept a solution proven by one of their own teams rather than an

idea from a consultant.

When Just Being Agile Isn’t Enough
Let’s look at a real example with a client I will call Company X.

Company X is a relatively small organization of less than 100

people providing software to the government. Their parent compa-

ny was known for requiring heavyweight processes on all of their

projects. But when Company X broke off on their own, they wanted

to be agile. They intentionally left behind the baggage of their par-

ent company’s processes. Becoming agile wasn’t the answer. Many

of their software releases were late and defect-ridden. Customers

were unhappy and threatening to never use their products again.

As a result, they brought on board outside consulting help when

they realized they had gone too far in dropping defined processes.

A new project needed to be delivered to an already unhappy

customer. The consultant seized the opportunity to solve the prob-

lem using upside down thinking. Specifically, the consultant gave

the team a brief training session on involving key stakeholders

and improving communication between developers and testers,

and then coached them through the first few months of their proj-

ect. This was counter to a traditional path of conducting a compre-

hensive gap analysis, followed by process definition, piloting, and

training. That would take months and there was no time.

The result? The team delivered a high-quality, on-time product

to their customer.

Rethinking How to Manage Tasks
Company X needed to make changes rapidly to address their

pain points of basic task management and testing. Task manage-

ment was critical because Company X was in constant interrupt

mode always reacting to the latest fire-drill in the company. When

it came time to release, Company X never had enough time left in

the schedule to do adequate testing, which was why their releases

were often bug-ridden.

To make matters worse, each release was often focused on

changes requested by a specific customer. The development team

had a history of failing to conduct adequate regression testing

leading to breakage of functionality used by a different customer.

To address these critical pain points as rapidly as possible, the

consultant held training sessions on several Scrum-like practices.

He emphasized the goal of each practice and how that goal could

help Company X with specific pain points.

RATHER THAN FOCUS ON
A CLIENT’S WEAKNESSES,
IT IS OFTEN A BETTER IDEA
TO START A CONSULTING
ENGAGEMENT BY IGNORING
KNOWN WEAKNESSES.

B E T T E R S O F T W A R E T e c h W e l l . c o m 	 25

http://techwell.com

As a rule of thumb, the team should always conduct sprint re-

views with customers. The consultant emphasized that the goal of

this practice was to make sure the customer was on board and par-

ticipated with product acceptance. Because two specific customers

used the product differently, the consultant stressed the impor-

tance of engaging with both customers.

When it became evident that one of those key customers

could not attend the sprint review, the team brainstormed how to

meet sprint review goals. As a result, the product owner agreed

to take an early version

of the product to get that

customer’s feedback. This

was an innovative solution

the team came up with to

achieve the real goal of

the sprint review practice.

Even agile projects can be-

come routine when we for-

get the why behind certain

tasks.

This is upside down

thinking in that the team

didn’t focus on following

repeatable steps in a pro-

cess, such as going through

the motions of a sprint re-

view meeting without a key

customer. Rather, they fo-

cused on what it would take

to achieve the real goal,

which was key stakeholder

involvement and buy-in.

A Unique Approach to Testing
Another identified pain point was testing. Company X didn’t

have a defined testing process, and too many defects were escap-

ing internal testing only to be found after delivery by the customer.

They could have taken the traditional approach of defining a de-

tailed regression test suite and requiring it to be run prior to each

release. But given how long it would take to build that suite, the

team knew that approach would not solve the immediate quality

problems in a reasonable amount of time.

Once again, the team held brainstorming sessions to discuss

specific reasons why their testing wasn’t working well. First, they

agreed they needed to build a full regression test suite, but they

couldn’t wait until it was done to address this problem. Instead,

they immediately started building and using small pieces of the

test suite focusing on areas they knew were likely trouble spots.

Along with incrementally building their test suite, they adopted

a focused regression testing approach where they selected specif-

ic areas to spend extra time testing before each release. This was

based on the likelihood of problems, considering past experiences

and known changes in the current release.

They knew that part of their testing problems was caused by

poor communication between developers and testers. One tester

complained that he couldn’t tell what to test from the tickets the

developers were completing. After discussing this problem, the

developers agreed to start placing better notes in their tickets to

make it clear to the testers how to set up the tests and what to look

for to ensure the change worked correctly.

Company X could have made placing notes in tickets a required

part of the defined testing process, and they could have had their

quality group check to make sure that was happening. This is what

is often done in many traditional organizations to make sure a pro-

cess improvement is followed.

But when you take this approach, you are at risk of developers

just going through the motions of creating a note in the ticket so

they don’t receive a non-compliance report from the quality group.

Developers can forget the goal is not placing a note in a ticket, but

rather improved communication with testers.

The consultant made it clear to the team that placing a note in

the ticket is one way—but not the only way—to help achieve the

goal. He let the team know that when a developer felt it would be

more effective to just go talk to the tester, then they should use that

option. Of course, this made it more difficult for the quality group

to verify compliance to the practice. It is far easier to verify that a

note has been placed in a ticket.

Are you trying to make the job easier for your quality assur-

ance auditors, or do you really want to improve the performance

of your software teams?

Putting Upside-Down Thinking to Use
Don’t spend a lot of time defining practices first. Rather, coach

the team and make them aware of choices to achieve project goals.

In our example, the development organization was able to rap-

idly put improvements in place leading to reduced latent defects,

happier customers, and measurably higher performance. If spe-

cific processes had been dictated from the start, the team would

not have bought into the more flexible approach. It helped to hear

about the positive results achieved on a project in real time by

their own teammates.

This doesn’t mean that this approach works on every project.

There certainly are situations where organizations need to be

more prescriptive in the activities, like dealing with life-critical

applications.

However, by being less prescriptive with defined processes

and coaching teams in how to find innovative solutions during the

project lifecycle, software development teams can dramatically

increase their likelihood of achieving higher performance results.

This may sound upside down from what many of us have been

taught, but in practice it works.

pemcmahon@acm.org

B E T T E R S O F T W A R E T e c h W e l l . c o m 	 26

mailto:pemcmahon@acm.org
http://techwell.com

䔀瘀攀爀礀漀渀攀 栀愀猀 瀀攀爀昀漀爀洀愀渀挀攀 椀猀猀甀攀猀⸀
䄀瀀椀挀愀 挀愀渀 ǻ渀搀 礀漀甀爀猀 戀攀昀漀爀攀 礀漀甀爀 挀甀猀琀漀洀攀爀猀 搀漀⸀

笀 紀䰀漀愀搀 琀攀猀琀 愀渀礀 眀攀戀猀椀琀攀 ☀ 愀瀀瀀氀椀挀愀琀椀漀渀 愀琀 猀挀愀氀攀⸀ 

笀 紀嘀椀猀甀愀氀椀稀攀 眀攀戀Ⰰ 洀漀戀椀氀攀Ⰰ 愀渀搀 䄀倀䤀 瀀攀爀昀漀爀洀愀渀挀攀⸀

䄀瀀椀挀愀 匀礀渀琀栀攀琀椀挀

吀栀攀 漀渀氀礀 猀琀愀挀欀 礀漀甀 渀攀攀搀Ⰰ
琀漀 琀攀猀琀 礀漀甀爀 漀琀栀攀爀 猀琀愀挀欀猀⸀

http://bit.ly/2pHIjLd

Oct. 15–20, 2017
Toronto, ON

Hyatt Regency Toronto

Learn More: https://wel l .tc/sc17bsm

RESERVE YOUR SPOT NOW FOR THE BEST PRICING
Better Software subscribers can receive up to

an additional $200 off with code BSM

Agile Testing

Mobile Testing

Continuous Integration

Cloud Testing

Performance Testing

DevOps

Test Design

Test Automation

Test Management

C O N F E R E N C E T O P I C S I N C L U D E :

WE’VE RESERVED
YOUR SEAT

https://well.tc/wchn

http://www.rapidvaluesolutions.com/accurate

10 Things You Must
Do to Become
Truly Agile

Jim SchielBY

B E T T E R S O F T W A R E T e c h W e l l . c o m 	 30

http://techwell.com

s an agile coach and consultant, I have one question

I ask my clients when I start an engagement: “Is your

organization truly agile, or are you just using the right

words?” You would think, by this time, that there would be a signif-

icant number of truly agile organizations positively changing their

environments.

For many software development organizations, being agile is

all about doing Scrum, kanban, or Extreme Programming (XP). But

even though agile frameworks model agile principles, using these

frameworks doesn’t automatically make the organization agile. Ag-

ile is not a state of doing; it’s a state of being.

Being truly agile is clearly stated in the Agile Manifesto as be-

ing focused on individuals and interactions, working software,

customer collaboration, and responding to change. These values

must be built into the organization and consistently put into prac-

tice on projects.

So, how do you know if your organization is truly agile or just

using the right words? Based on my years of experience, I have

created a list of ten things you must do to become truly agile.

1. Focus Business Models on Value
Business models of agile organizations focus less on the effi-

cient delivery of products and services and more on listening to

customers, earning their loyalty, anticipating their needs, and

determining how to create new customers. Instead of producing

more, the agile organization learns to emphasize value and contin-

uously adapting plans.

In 1999, Whirlpool was desperate to improve customer loyal-

ty and implemented a program of innovation from everyone, ev-

erywhere. They required a certain amount of innovation in every

product development plan.

Whirlpool’s customer loyalty index has risen by 68 percent and

their stock has nearly tripled. [1] Whirlpool may not be a software

provider, but the example shows how the right business model

can positively influence outcomes. Organizations that still create

detailed, linear development plans, and then force the team to

follow the plan, are missing the boat. The truly agile organization

employs agility to focus their business on delivering value with fre-

quent opportunities for feedback and reassessment of their plans.

2. Realize That Agility Is a Mindset, Not a
Framework

Looking for easy answers and promised gains from agility,

management is frequently convinced to invest in sophisticated

frameworks to support enterprise-scale agile projects. Instead

of teaching how to be agile, these frameworks frequently create

structures other than agile that the organization must learn.

In an agile organization, scaling is organic and driven by an

internalization of agile principles across the entire company. In

many ways, agility becomes an instinctive mindset. Proper scaling

occurs when agility is incorporated across the organization and

when management processes and practices are reinvented. De-

velopment and management teams alike must adopt and use agile

principles to get work done.

3. Make Teams Autonomous
A significant degree of productivity in agility comes from teams

that have been given the mandate to get a job done and have been

given sufficient autonomy to do so. Unfortunately, many teams are

surrounded by non-agile management.

This creates friction that can often be seen when teams are told

they are autonomous but find management overriding their deci-

sions and plans. They frequently must wait for those decisions to

be made based on traditional metrics (e.g., productivity, efficiency,

and estimate-to-actual).

The problems created between autonomous teams and non-ag-

ile management can be solved by doing two things. First, you must

ensure that the management team understands and uses agile.

“INSTEAD OF
PRODUCING MORE, THE
AGILE ORGANIZATION

LEARNS TO
EMPHASIZE VALUE
AND CONTINUOUSLY
ADAPTING PLANS.”

B E T T E R S O F T W A R E T e c h W e l l . c o m 	 31

http://techwell.com

Second, and much more importantly, you must look at effective

external team leadership as a completely different skill set. This

requires training management to support the team by building

relationships, articulating clear goals, and helping the team make

decisions.

4. Work in Small Batches
In all work, complexity and risk go hand in hand and are di-

rectly proportional. Usually, the more complexity, the greater the

risk. Complex work requires significant effort, and less complex

work requires less effort. If complexity results in the team spend-

ing more time fixing mistakes, we’ve gained nothing. Productivity

can be improved by breaking down complex work into smaller,

less complex tasks.

While doing testing on small batches of work may seem like

it adds a lot of overhead, small batches allow organizations to get

better by doing something repeatedly and frequently. It has been

my experience that tasks should be sliced into small units not to

exceed a few days’ work. Of course, completed work should still be

inspected to ensure it meets the needs of the customer.

5. Aim for Small Teams
Small teams consistently outperform individuals and large

teams, especially when a variety of skills and perspectives are

needed to complete a project. I recommend no more than eight

people on a team. The bigger the team, the harder it is to get every-

one together and to reach agreement on decisions. Smaller teams

simply work more efficiently.

When creating a small team, the agile organization should keep

some key practices in mind.

Teams rely far more on the right mix of skills than the right mix

of personalities. Attempts to align compatible personalities using

assessment tools often provides the same result as having manage-

ment decide on the membership.

Teams form around common goals and frequently need little

direction. Once you’ve focused your team members on a problem

and made sure they have what they need to get it done, they’ll usu-

ally deliver great results.

Teams work better when everything they need is already with-

in their sphere of influence. Scrum, in particular, defines a team

as a set of developers that has all the skills necessary to do what is

asked of them.

6. Perform Work in a Single-Piece Flow
Championed by Toyota, the concept of single-piece flow pro-

cessing has revolutionized how the factory floor is run. In sin-

gle-piece flow, the team completes a single unit, then starts work

on the next unit. As a team completes a unit of work (including cod-

ing, testing, and documentation), the item should be immediately

demonstrable. This gives the team frequent feedback rather than

waiting until everything is built before testing anything.

Single-piece flow yields completed, demonstrable software ev-

ery few days. Mistakes are quickly found and fixed, and costs are

lowered dramatically.

To accomplish single-piece flow, teams must abandon tradi-

tional approaches where work is done in steps and handed off

from one specialist to another. Instead, team members bring their

individual skills to bear on engineering a task or solving a key

problem. The team works together to simultaneously collaborate

on the execution of the work.

7. Work in Short Cycles
While shrinking team size and complexity of work offers true

benefits, don’t forget to reduce the length of your iterations, too.

B E T T E R S O F T W A R E T e c h W e l l . c o m 	 32

http://techwell.com

I recommend shortening iterations to no more than two weeks.

In agile development, the end of an iteration signals an opportuni-

ty to evaluate what’s been built against customer needs. Shortened

iterations improve quality, reduce risk, and reduce project cost. As

a result, time to respond to the inevitable defect or incorrect deci-

sion is greatly improved.

I frequently ask coders and testers, “After you write some code

or some tests, what do you do next?” Invariably, the coders run the

application and the testers run their tests. “If the latest code doesn’t

work, the sooner we find out, the easier it is to fix,” they say.

I couldn’t agree more. The more often you test your assump-

tions, the easier it is to fix them. Longer iterations accumulate risk

that your customer won’t like what you’ve built. Shorter iterations

help you build what your customer really needs.

8. Value Soft Skills
While technical skills are important, soft skills can be more

valuable to sustaining high team performance. These skills include

the ability to:

•	 Argue passionately while not attacking

•	 Share information freely; full transparency is necessary

•	 Disagree with a decision while fully supporting it

•	 Make abstract concepts visible and easily understandable

The best team member I’ve found is someone who has great

communication skills, is innovative, and is adaptable to most any

situation at hand. While the ability to code in Java or build effec-

tive functional specification is important, I’d recommend giving

some attention to those soft skills, too.

9. Monitor Debt Closely
While building products or services, organizations tend to in-

cur a significant amount of debt. Debt is a result of the difference

between doing something right and doing something poorly. Debt

comes in a variety of categories, as shown in table 1.

Debt forces the organization to compromise because available

choices are limited due to outstanding debt. While organizations

are beginning to understand the importance of dealing quickly

with defects in order to limit technical debt, many still don’t rec-

ognize the need to pay attention to learning opportunities or re-

search opportunities provided during the typical iteration.

To keep your debt under control, keep in mind the following:

Assume that any debt not being actively addressed is probably

getting bigger. Take steps to reduce it by planning daily to improve

skill sets, decision-making capability, innovation, and motivation.

When problems do occur, take time to identify the root cause

and correct the appropriate issue to keep debt from growing. If

an organization fails to deliver on time because of product perfor-

mance issues, the root debt-related cause might be that the organi-

zation lacks the skills to do effective performance testing.

10. Be Brave Enough to Experiment and Fail
The world of business is replete with the remains of compa-

nies that got comfortable. A business that doesn’t move forward is

moving backward, and a business or organization that views ex-

perimentation as a gamble will probably lose out in the long run.

Sometimes that means you’re going to get it wrong. Consider

Thomas Edison’s experiments with the light bulb. Edison’s assis-

tant logged more than 2,700 individual experiments. When asked

by a reporter about his many failures, Edison responded, “I now

know several thousand things that won’t work!” [2]

To innovate, one must experiment and fail. Failure creates

amazing possibilities for learning and growth, and must be made

part of the organizational culture. A study was performed with Up-

worthy (not a software development organization) regarding their

emphasis on fostering experimentation and divergent thinking.

Their culture assumes that a 95 percent failure rate is a sign of a

team doing a phenomenal job of experimenting and learning how

to get to the right answer. [3] That’s an unknown attitude in many

organizations, where teams are encouraged to think until they de-

termine the correct answer.

Teams must be permitted to experiment and fail. Where in-

novation is called for, so is experimentation. Throwing away a

thousand lines of good code for the hundred lines that work is a

cost-saver in the long run—consider all of those defects the team

won’t have to fix.

Becoming Truly Agile
Is your organization transforming into an agile one or one that

simply uses agile terminology? If you want to be successful in get-

ting the most day-to-day value out of your teams, you’ve got to be

prepared to create new ways of working. To make real agility in

your organization, you’re going to need to make some real changes.

jim@artisansoftwareconsulting.com

REFERENCESCLICK FOR THIS STORY'S

Debt How Debt Occurs

Technical debt Incurred when we build our products with
less than the quality the product demands

Decision debt Incurred by deferring decisions until you’re
forced into making one

Learning debt
Incurred by deferring learning opportunities
until you have to compromise due to lack of
skills

Innovation debt
Incurred by doing only what is safe and
never trying to include some degree of new
functionality in every project

Table 1: Common types of debt taking place in software development

B E T T E R S O F T W A R E T e c h W e l l . c o m 	 33

mailto:jim@artisansoftwareconsulting.com
http://www.stickyminds.com/sticky-note/references-224
http://techwell.com

bit.ly/GET-SECRETS

SELENIUM SECRETS & OPEN
SOURCE ADVANCED AUTOMATION

perfectomobile.com

SHHH!

http://info.perfectomobile.com/selenium-automation-essential-guide.html?utm_source=egs-bsm

A COMPLETE IOT SOFTWARE
TESTING SOLUTION

LEARN MORE

STATIC &

DYNAMIC

ANALYSIS

UNIT

TESTING

API, LOAD,

PERFORMANCE, &

SECURITY TESTING

SERVICE

VIRTUALIZATION

Learn more at parasoft.com/iot

The importance of software testing and error prevention has

risen dramatically, paralleling the continued escalation of

software complexity. Parasoft provides developers with the

tools and infrastructure necessary to test early and regularly,

ensuring quality throughout the software development

lifecycle.

“

”
Theresa Lanowitz, voke inc.

Perfecting Software

https://parasoft.com/iot

eSoftware Tester Certification—Foundation Level
Accredited training for the ISTQB® Certified Tester—Foundation Level (CTFL) certification. Find out what it takes to be a successful
software tester and learn about the relationship of testing to development, test levels, black-box methods, white-box testing,
exploratory testing, and more. ISTQB® is the only internationally accepted certification for software testing and has granted more
than 500,000 certifications in more than 100 countries around the world.

eFoundation for Requirements Development and Management
Build the foundation you need to successfully develop and manage requirements for business projects and software products in
eFoundation for Requirements Development and Management. Learn key requirements development and management skills and
discover the ways to elicit and document requirements.

eSelenium 2 WebDriver With Java
Selenium WebDriver is the web automation tool of the moment, and Selenium WebDriver skills are in demand. In eSelenium 2
WebDriver With Java you will learn real world techniques associated with the Selenium WebDriver API, focusing on the information
you need to get productive with Selenium WebDriver. Throughout the course self-learning strategies are emphasized and
demonstrated, so that you don’t just learn the Selenium WebDriver API in depth, you also learn how to discover more on your own.

ePlanning, Architecting, and Implementing Test Automation
Develop a custom test automation plan and architecture for your organization in ePlanning, Architecting, and Implementing Test
Automation. Get access to valuable templates you can use to draft your own test automation plan, plus take advantage of one
hour of consulting to answer questions and finalize your plan.

SQE TRAINING
A T E C H W E L L C O M P A N YSQETRAINING.COM/ELEARNING

Delivered in short lessons with clearly stated

learning objectives and regular progress checks,

eLearning courses offer a unique approach for

software professionals with travel and time

constraints. Learn anywhere at your own pace—

on your terms.

Get the training you need with SQE Training’s

eLearning courses: eSoftware Tester

Certification, eFoundation for Requirements

Development and Management,

eSelenium 2 WebDriver With Java, and the new

ePlanning, Architecting, and Implementing

Test Automation. View a no-obligation demo

today at sqetraining.com/elearning.

eLearning

TRAINING ON
YOUR TERMS

https://well.tc/wchf

ilovesoftwaretesting

THAT IS
NO ORDINARY

SOFTWARE
TESTER

©
 M

ajdanski_shutterstock.com

http://www.isqi.us

B Y T R O Y T O L L E
t is not news that the internet has changed how we operate

in our daily lives. We stream our shows instead of watching

them in real time. We carry the power of the internet in our

pockets. We can subscribe to thousands of software-as-a-service

(SaaS) offerings to help us with running our businesses, automat-

ing our homes, and finding our next meals to cook. Our profes-

sional and personal lives are inundated with technology, and it has

radically changed how we socialize and conduct business.

However, one area where technology seems to lag is in educa-

tion. We still rely on traditional models of higher education with

full curriculums, transcripts, and grade point averages. The same

is true with corporate training. Most companies still distribute

manuals and rely on on-the-job or apprenticeship models for train-

ing, with no ability to formally track and measure the effectiveness

of these methods.

Thanks to new developments in software, measuring learn-

ing in the education space is shifting away from more traditional

methods. Training built on classroom lectures with a single grade

for a course is being replaced with a more experiential approach

to education and the measurement of what a person learned. This

new technology is making learning accessible in real time on a

wide variety of devices.

HOW
TECHNOLOGY

IS CHANGING

THE WAY WE

LEARN

B E T T E R S O F T W A R E T e c h W e l l . c o m 	 38

http://techwell.com

The Emergence of the Knowledge
Economy

With the rise in services made available through technology,

the knowledge economy has emerged. It is essential for business-

es to provide easy and fast access to quality educational content

to facilitate the growth of their employees. Communities are also

finding ways to educate the public without interfering with busy

schedules.

The knowledge economy is much more than providing edu-

cational materials or affordable internet access. The knowledge

economy uses technology growth to share knowledge with a com-

munity of coworkers or fellow students, which in turn fosters new

ideas and a wealth of new experiences. We are no longer bound by

the walls of our offices or classrooms; we can communicate and

work with people around the world in real time.

As a result, sharing and generating ideas can take place at a

much more rapid pace.

The Evolution of the Digital Learning
Experience

Historically, learning has been a face-to-face event between

teacher and student. In recent years, however, distance education

offered by universities and specialty sites has removed the neces-

sity of in-person learning.

Distance learning and the rise of e-learning began to really

take shape in the ’90s, when the first learning management system

(LMS) was introduced. These software systems were designed to

aid in administration, tracking, and reporting for the traditional

classroom. At that point, the LMS started replacing the physical

classroom with a virtual one. The system became a document re-

pository that housed learning content in file format for download,

albeit with minimal interaction capabilities.

In today’s marketplace, there are thousands of learning prod-

ucts that meet a wide range of education needs and support many

types of content delivery. As platforms have evolved, so has the

learning content.

With the increased capabilities offered by an LMS, develop-

ers of course authoring tools looked at ways to standardize by

packaging materials as a sharable content object reference mod-

el (SCORM) file. [1] These zip files contain learning content that

adheres to a communication standard for storing and retrieving

information about delivery of the content from an LMS. Any con-

tent created that conforms to the SCORM specification can be inter-

changed between one LMS and another.

Though still evolving, SCORM packages are falling out of favor

as content providers have begun incorporating more standalone

video content into their offerings.

Because high-quality video is readily available on our mobile

devices with high-speed access to the cloud, video is a natural me-

dium for sharing and creating content. Done well, video can offer

an engaging, effective learning experience by condensing material

into bite-sized chunks.

How We Like to Learn Is Rapidly Evolving
There is a notable cultural shift as the next generation of

knowledge workers enters the workplace. Learning platforms

in businesses will need to adapt to allow more than just chat for

collaboration; learners now expect to be able to share user-gen-

erated content in the form of documents, pictures, and video. Our

mobile-focused society also demands that the systems supporting

the learning experience always be available simply by turning to

a phone or tablet.

I believe that there are three game-changing shifts taking

place: the acceptance of e-learning, the proliferation of intelligent

devices, and the emergence of virtual reality.

ACCEPTANCE OF E-LEARNING
The opportunity for e-learning is staggering. According to

market research, online corporate training is expected to grow

by 13 percent a year over the next decade, with 77 percent of US

companies offering technology-based learning. [2] The ability to

learn anytime, anywhere makes online education more attractive

to students than traditional classrooms. The abundance of quality

content has increased employer acceptance of degrees and certifi-

cations earned online.

INTERNET OF THINGS AS LEARNING
DEVICES

The number of connected devices in the world continues to

skyrocket. Gartner predicts there will be more than 20 billion In-

ternet of Things (IoT) devices by 2020. [3] The way we experience

the world around us is aided and being chronicled through these

everyday devices, and the implications here for learning are huge.

If we have a question, we don’t have to open a laptop anymore

to get an answer—hands-free, voice-controlled devices for our

homes, such as the Amazon Echo, mean we can simply ask, “How

far are we from the sun?” Our Fitbit can help us understand our

bodies and motivate us to get into shape simply by wearing it on

our wrist or attached to our clothing.

“LEARNING PLATFORMS IN
BUSINESSES WILL NEED TO ADAPT TO
ALLOW MORE THAN JUST CHAT FOR
COLLABORATION; LEARNERS NOW
EXPECT TO BE ABLE TO SHARE USER-
GENERATED CONTENT IN THE FORM OF
DOCUMENTS, PICTURES, AND VIDEO.”

B E T T E R S O F T W A R E T e c h W e l l . c o m 	 39

http://techwell.com

With the IoT, learning can move from simple communication

of knowledge to interactive and engaging ways to learn. IoT allows

us to take our learning from the analog to the digital world and to

record our experiences, attempts, and accomplishments of tasks.

Access to this new data that IoT gives us opens possibilities for new

evaluation and measurement. It can help motivate us and bring

new revelations to light that can shape our training experiences

for the better.

VIRTUAL REALITY AS AN IMMERSIVE
EXPERIENCE

Virtual reality and augmented reality are making a splash in

the gaming space, and these technologies are fighting to find their

place in learning environments, too. Virtual environments are a

great way to train someone or immerse them in role-play inter-

actions without putting learners into risky situations or using ex-

pensive equipment. Navigating a heart surgery, operating a front

loader, flying a fighter jet in a dogfight, or managing a nuclear re-

actor in a disaster are all possible using virtual and augmented

reality devices. The graphics capabilities now are at a level where

the experience feels very realistic and can prepare students for the

experience in real life.

Tracking the Learning Experience with xAPI
The 70:20:10 model for learning states that 70 percent of our

learning takes place through on-the-job experiences, 20 percent

from our interactions with peers or mentors, and 10 percent from

more traditional educational tasks, such as testing. Until recently,

we have been able to measure and track only the 10 percent. If we

can’t evaluate the entire learning experience, it is impossible to

determine what training methods are most effective.

The training and development world tried to collect as much

information made possible using LMS technology and in the form

of spreadsheets and files, but this type of data collection quickly

becomes unmanageable. The SCORM specification also is limiting

because of its focus on communication of data back and forth to the

LMS, without a broader specification on the schema of that data.

Because of this, LMS and SCORM authoring tool vendors resort to

storing information in proprietary formats that severely hamper

the ability to report on the details of learning across a variety of

courses or implementations.

The Experience API (xAPI) was built to help solve this problem.

[4] xAPI greatly improves on SCORM and allows for the recording

of all learning experiences—from formal classroom instruction to

online interactions. xAPI is a REST API that communicates expe-

riences as a statement, featuring an actor who is participating in

the experience, a verb describing the experience, and the object or

subject of the experience. These statements are stored in a learn-

ing record store (LRS). Figure 1 shows a sample xAPI transaction

record describing my watching a video.

Because we experience learning in so many ways, the verbs

that can be used in an xAPI statement are vast—participating in

meetings, reading blogs, having conversations around the office,

watching videos online, taking formal courses delivered through

an LMS, conducting simulations, apprenticing, and so much more.

The ability to store each of these interactions in a standard format

makes the analysis of a person’s or group’s experiences available

for research, comparison, and measurement.

xAPI is still in its infancy, so use of the technology in the learn-

ing industry should grow in the coming years as more of our learn-

ing experiences become xAPI-enabled. The result of having this

increased insight into how people learn will enable companies to

train and retain top talent more effectively, provide customized

learning experiences for different learning personalities, and let

teachers tailor their content based on big data analysis.

Validating the Learning Experience
xAPI and the LRS record a higher percentage of students’ total

learning in a standard way. One of the great things about a com-

mon recording standard is that records can be shared between

any LRS implementing the server-side xAPI specification require-

ments. This means, for example, that as a student moves from col-

lege to a job and then from workplace to workplace, all learning

records can remain with the individual.

Recorded learning data must be safe and verifiable. There

needs to be a way to guarantee accuracy and security.

This is an area of the digital learning experience that hasn’t

been fully developed yet, but I believe that there is huge potential

in using software systems that utilize blockchains. Blockchains are

blocks of information that are linked together and stored on a net-

work of distributed, decentralized computers.

This network of distributed devices ensures that security of any

block of data is built in. No one person owns the entire system,

making it extremely difficult for data to be edited or changed once

it has been added to the chain.

B E T T E R S O F T W A R E T e c h W e l l . c o m 	 40

http://techwell.com

The blocks themselves are linked together using cryptographic

algorithms, meaning it would be nearly impossible for the data in

the blocks to be modified or forged. Résumés and learning experi-

ences could be instantly validated while still preserving privacy.

Adopting Online Learning
Technology is changing the way people learn, as well as the

ways learning experiences are tracked and recorded. Innovation

based on technology advances is opening new doors to experience

learning in different ways, track it more precisely, and evaluate its

effectiveness.

ttolle@digitalchalk.com

REFERENCESCLICK FOR THIS STORY'S

Figure 1: Example xAPI statement showing that the author watched a specific segment of a video using Firefox on a Mac

B E T T E R S O F T W A R E T e c h W e l l . c o m 	 41

mailto:ttolle@digitalchalk.com
http://www.stickyminds.com/sticky-note/references-225
http://techwell.com

For more than twenty-five years, TechWell

has helped thousands of organizations

reach their goal of producing high-value

and high-quality software. As part of

TechWell’s top-ranked lineup of expert

resources for software professionals, SQE

Training’s On-Site training offers your team

the kind of change that can only come

from working one-on-one with a seasoned

expert. We are the industry’s best resource

to help organizations meet their software

testing, development, management, and

requirements training needs.

With On-Site training, we handle it all—

bringing the instructor and the course to

you. Delivering one of our 60+ courses

at your location allows you to tailor the

experience to the specific needs of your

organization and expand the number of

people that can be trained. You and your

team can focus on the most relevant

material, discuss proprietary issues with

complete confidentiality, and ensure

everyone is on the same page when

implementing new practices and processes.

9
REQUIREMENTS
COURSES

40
TESTING
COURSES

7
MANAGEMENT
COURSES

4
DEVELOPMENT
AND TESTING
TOOLS COURSES

17
AGILE
COURSES

2
SECURITY
COURSES

BRING THE TRAINING TO YOU
Software Tester Certification—Foundation Level

Mastering Test Design

Agile Tester Certification

Agile Test Automation—ICAgile

Integrating Test with a DevOps Approach

Mobile Application Testing

And More!

SQETRAINING.COM/ON-SITE

TRAIN YOUR
TEAM ON

YOUR TURF

6 0 + O N - S I T E C O U R S E S

IF YOU HAVE 6 OR MORE TO TRAIN , CONSIDER ON-S ITE TRAINING

https://well.tc/wchx

Finding the Bottlenecks in the Agile and
DevOps Delivery Cycle
By Tanya Kravtsov

To achieve incremental software development and continuous
feedback, you need to eliminate the tasks that create bottlenecks, which
hinder the flow of development. A chain is no stronger than its weakest
link, and identifying these “weak links” is a critical step toward achiev-
ing agility and increasing efficiency.

Read More

Managing the Turbulence of
Organizational Change
By Naomi Karten

In times of major change, particularly organizational change, it’s
normal for people involved to experience turbulence, including anxi-
ety, anger, or uncertainty. If you’re overseeing a change, how you com-
municate with those affected can significantly decrease—or increase—
the duration and intensity of that turbulence.

Read More

Continuous Testing: New Improvements
on an Old Idea
By Alex Martins

The concept behind continuous testing is far from new, but what’s
different now is that software development practices have evolved to a
point where developers are embracing testing as part of their respon-
sibilities. Testing is slowly moving from being an “event” to an activity
throughout the development lifecycle.

Read More

Training and Tomorrow’s Jobs
By Pamela Rentz

Reports vary in predictions about what parts of the workforce will
be most affected by automation. How far-fetched is the idea that sig-
nificant numbers of technology jobs will become irrelevant? How can
training and education programs better prepare us for the future?

Read More

Featuring fresh news and insightful stories about topics important to you, TechWell Insights is the place to go for what is
happening in the software industry today. TechWell’s passionate industry professionals curate new stories every weekday
to keep you up to date on the latest in development, testing, business analysis, project management, agile, DevOps, and
more. The following is a sample of some of the great content you’ll find. Visit TechWell.com for the full stories and more!

T E C H W E L L I N S I G H T S

Think Small: Break Down User Stories for
Agile Success
By Mitch Goldstein

The entire agile team needs to be involved in a continuous process
of identifying ways to simplify work, right up until a story is complete.
Smaller stories ensure that development work is rapid and trackable.
Mitch Goldstein details how to focus on breaking stories down into a
more estimable, “digestible” size.

Read More

Tester Contributions to Scrum
Conversations
By Justin Rohrman

Scrum is one of the most popular paths to agile, but testers some-
times join this framework as an afterthought and aren’t quite sure how
they fit into the development flow. Scrum is more than answering three
daily questions, and testers are in a position to understand the project
better than anyone else on the team.

Read More

The Future of Testing: Quality Engineers
and Specialist Skills
By Melissa Tondi

Many testers have opinions about the future of their profession.
Melissa Tondi thinks the traditional QA position is moving toward
that of a quality engineer—a skilled role using techniques previously
thought of as the domain of specialists. If we focus on efficiency, tomor-
row’s testers can expand their skill sets.

Read More

The Software World Is Changing—Are You
Willing to Change with It?
By Lee Copeland

The software landscape is changing. Processes are becoming quick-
er and leaner, but instead of re-evaluating some of our traditional
practices, we sometimes try to make them fit where they don’t belong.
This holds back continuous improvement. If you want change, you first
need to be willing to change.

Read More

B E T T E R S O F T W A R E T e c h W e l l . c o m 	 43

https://well.tc/wpiv
https://well.tc/wp5k
https://well.tc/wp54
https://well.tc/wp5o
http://techwell.com
http://techwell.com
https://well.tc/wp53
https://well.tc/wp5w
https://well.tc/wp5i
https://well.tc/wp55
http://techwell.com

T E C H W E L L I N S I G H T S

Keeping Your Software Testing Abilities
Relevant Today, Tomorrow, and Beyond
By Sunil Sehgal

Development and product teams have embraced agile and DevOps.
What can testers do to keep up with their development peers? Here
are some ideas about what testers can learn, what skills we can add,
and what processes we can start doing in order to continue delivering
quality today, tomorrow, and further into the future.

Read More

Engineering Architecture Systems for a
Faster Build
By Abraham Marin-Perez

In the era of continuous integration and continuous deployment,
big applications are creating bloated build pipelines. The problem is
when code becomes so entangled that every change impacts large por-
tions of the system, meaning there’s a lot to rebuild. If you reshape the
code architecture, you can reduce build times.

Read More

Make Your Security Testing More Agile
By Alan Crouch

Security practices traditionally have followed a waterfall model,
adding security testing on at the end. Organizations need to coach their
security programs and testers to prioritize analysis and risk, much like
we do with agile stories, to better incorporate security defects with oth-
er feature work along the way.

Read More

7 Good Project Management Practices for
Replacing a Legacy System
By Payson Hall

When you need to replace a legacy system quickly, it’s tempting to
set aside good project management practices and push forward reck-
lessly. But doing so results in delays, cost overrun, and organization-
al chaos. Take time to understand the problem, plan and estimate the
solution, and set up your project for success.

Read More

The Difference between Managers and
Leaders
By Steve Berczuk

You often hear managers referred to as leaders, but the two terms
are not synonymous. Managers can be leaders, but not always, and
there are people who don’t have formal management positions who
are leaders. Understanding the difference can help people in both
roles—and their team members—be more effective.

Read More

Test Your Data Quality to Increase the
Return on Your QA Investment
By Shauna Ayers

With the high volume of data coming into your organization, it’s
important that it be complete, correct, and timely. But considering the
velocity at which this data is moving, how do you measure its current
quality? You must be able to test it wherever it sits still enough to be
viewable, without altering it.

Read More

10 Strategies to Get the Most out of
Attending a Conference
By Greg Paskal

Any time you get the opportunity to attend a conference, think of it
as a chance to learn and bring some new ideas back to your team and
company. It’s important to be intentional as you prepare and to know
what you want to achieve. Here are ten strategies—and a worksheet—
to help you get the most out of the experience.

Read More

Encouraging Just-In-Time Testing
By Mukesh Sharma

When the development landscape is extremely dynamic, a testing
effort that is adaptable and flexible with an ability to learn the system
and craft scenarios on the go is increasingly important. Testers should
be encouraged to be just-in-time testers with the ability to test anything
at any time.

Read More

Building for the Internet of Things Is
Great—Just Keep Security in Mind
By Chris Poulin

The Internet of Things gives us opportunities to transform every-
day life into frictionless interactions between humans and machines.
However, that also means the technological attack surface is every-
thing. Makers learning how to build IoT devices must also learn how to
build safe, secure, and compliant devices.

Read More

What You Should Consider to Make the
Best Use of Your Collected Data
By Catherine Cruz Agosto

We live in a world where data is constantly being recorded. In
software, determining the timing of when to use that data is critical to
making the most of the information. You should take into account data
freshness, the data-gathering processes and any dependencies between
them, and when to distribute information.

Read More

B E T T E R S O F T W A R E T e c h W e l l . c o m 	 44

https://well.tc/wp8c
https://well.tc/wp85
https://well.tc/wp8i
https://well.tc/wp8o
https://well.tc/wp83
https://well.tc/wp84
https://well.tc/wp7v
https://well.tc/wp7t
https://well.tc/wp79
https://well.tc/wp7j
http://techwell.com

CAREER DEVELOPMENT

Early in my management career, I had the opportunity to work

with a talented developer. I’ll call him Sam. Sam was smart, for sure,

and he knew it. He also knew he was the only person who deeply un-

derstood some critical modules of the software we were developing.

However, Sam struggled with emotional intelligence. He was of-

ten oblivious to how his words and negative actions impacted oth-

ers. If someone disagreed with him, he tended to write them off as

stupid, and he could easily lose his temper in meetings. He refused

to follow many of our internal processes because they were, in his

opinion, worthless. In short, team members and business stake-

holders trod lightly around Sam, hoping they wouldn’t set him off.

Managers put up with Sam’s belligerence over the years because

he was technically valuable—we couldn’t afford to upset him or risk

losing him to a competitor. The company was dealing with a ticking

time bomb. After being passed from group to group, Sam landed in

my organization. I was the last remaining manager for Sam to work

with, and I was a relatively inexperienced manager at that.

What was I to do with Sam?

What We Tolerate
Several years ago I came across a quote that has had a lasting

impression on me: “You get what you tolerate.” [1] It was used in

the context of marriage relationships, but it applies to many areas

of what we do as professionals. This is especially true for those of

us who lead teams that deliver software projects.

Everyone, especially management, tolerated Sam. But the im-

pact of his behavior was disastrous to team members. Trust quick-

ly eroded when the tsunami of Sam’s wrath crashed against some-

one in his way. Beyond hurt feelings, it hindered productivity and

led to increased attrition.

This problem is not unique to software development teams.

Sales-oriented organizations often tolerate destructive salesmen

as long as they make their numbers, and some organizations toler-

ate hopelessly demanding and abusive customers because of one

reason: “We need the money.”

So, what are you tolerating? In my work with software man-

agers around the globe, I often see three areas where we get what

we tolerate:

•	 Team member performance

•	 Conflict among team members

•	 Our own careers

Individual Performance
It’s easy to start tolerating lackluster performance. Engaged,

self-managed teams are a worthy aspiration, but over time, cer-

tain team members consistently go above and beyond while others

barely carry their own weight.

The incorrect perception is that the lower performers on your

team may be lazy. It could be they have just gotten into a rut and

need to be challenged. It could be the low performers are sufficient-

ly competent but realized how compensation works at many orga-

nizations—they can go above and beyond and get a 3 percent raise

while the person who barely performs receives a 2 percent raise.

Regardless, an objective analysis of your team would likely

find that you are tolerating lower performance from some team

members.

How much does this matter? Researchers of team effectiveness

examined the impact of team members who were deadbeats (de-

fined as “withholders of effort”), downers (who tend to “express

pessimism, anxiety, insecurity, and irritation”), and jerks (who vi-

olate “interpersonal norms of respect”). They concluded that tol-

erating only one of these negative people can bring down overall

team performance by 30 percent to 40 percent. [2]

The willing/able matrix shown in figure 1 can be used to help

guide team members to maximum effectiveness.

You Get What You Tolerate
IT IS NEVER EASY DEALING WITH DISRUPTIVE AND CONFRONTATIONAL DEVELOPERS—
ESPECIALLY WHEN THE PRODUCTIVITY AND WELL-BEING OF THE TEAM ARE AT RISK.
by Andy Kaufman | andy@i-leadonline.com

“The incorrect
perception is that the
lower performers on

your team may be
lazy. It could be they
have just gotten into
a rut and need to be

challenged.”

B E T T E R S O F T W A R E T e c h W e l l . c o m 	 45

mailto:andy@i-leadonline.com
http://techwell.com

The goal is for team members to operate in the upper-right

quadrant as fully able (competent and skilled) and willing (en-

gaged, motivated, and open to change).

Sam was fully able, in that he was clearly a talented developer.

But he had a willing problem. This placed him in the upper-left

quadrant of the matrix. Folks in that quadrant need to be chal-

lenged to move to the right. This can lead to the manager confront-

ing individuals if their performance doesn’t improve.

Conflict and Team Interactions
Beyond individual performance issues, we can also tolerate

poorly managed conflict between team members. Teams inevita-

bly encounter conflict, and if you’re a manager at all like me, you

may not particularly look forward to dealing with it. Yet how your

team deals with conflict can be a critical factor in how successfully

you deliver your projects. It can be a good thing and lead you to

better solutions, or it can be destructive, leading to reduced trust,

resentment, and attrition.

Cognitive conflict is the beneficial sort of conflict—the type

that wrestles with the ideas and approaches that lead to better out-

comes. Cognitive conflict is also necessary, and if you don’t have

some of it, you could be tolerating something just as insidious: arti-

ficial harmony. Affective conflict, on the other hand, is when those

interactions go over the line and get personal. Tolerate affective

conflict, and it’s only a matter of time before you’ll see hits to inno-

vation, quality, and overall team performance.

Talk with your team about these types of conflict, and be alert

to situations where you begin tolerating affective conflict.

Impact to Career Progression
So, what are you tolerating in your career? Have you grown

strangely content working for an organization that treats you more

like a resource than a person? Are you tolerating a boss who mi-

cromanages you and shoots down ideas without reasonable con-

sideration? Are you settling for a paycheck, having given up on

pursuing a path that would be more meaningful but risky?

In his book Workplace Poker, [3] author Dan Rust suggests that

if you’re not happy with the state of your project, the performance

of your team, or where you are in your career, there’s only one

person to blame: yourself. Rust’s point is that until you take re-

sponsibility for where you are, you won’t take responsibility for

improving your situation.

The best help I’ve found for handling career tolerations is a

mentor. It’s often too difficult to get the perspective we need on

our own. Regardless of how formal the relationship is, substantial

benefits come from having someone who can help assess who we

are, where we would like to go, and how we can get there.

Your Next Move
The willing/able matrix helped me start a long overdue conver-

sation with Sam. I challenged him to find an opportunity to grow

his influence at the organization and to improve the team’s overall

ability to deliver. When Sam pushed back and refused to change,

this eventually led to a more difficult conversation. Sam was now

confronted with the reality that if he didn’t change, it would cost

him his job.

I wish I could report that Sam’s eyes were opened and he

changed his behavior. In the years since, I have seen problem em-

ployees respond favorably to challenges and up their game. But

that’s not how things ended for Sam. I took the step we had all

avoided for too long, and Sam was asked to leave the company.

This resulted in Sam without a job and our team missing this high-

ly volatile but valued developer.

That seems like a lose-lose ending, but it’s not the end of the

story.

How long do you think we missed Sam, whom we thought we

couldn’t live without? Not long. Team morale and productivity im-

proved, and we were still able to complete projects. It turned out to

be a positive experience for Sam, too. His wife happened to attend

a class I was teaching years later. During a break, she told me that

being let go was a terribly difficult time for him, but he could now

say it was one of the best things that happened in his career. It was

the jolt he needed to make some necessary changes in his life.

You are getting what you tolerate—with your team and your

career. Some of these results are benign and unworthy of further

thought. But others are holding you and your team back from max-

imizing true potential. It’s your responsibility to remove anything

impeding your team.

What are you tolerating?

REFERENCESCLICK FOR THIS STORY'S

Challenge then confront if
no improvement

Provide further
opportunities

Confront Educate and encourage

- Willing +

-
 A

bl
e

+

Figure 1: How to move from tolerating to improving

CAREER DEVELOPMENT

B E T T E R S O F T W A R E T e c h W e l l . c o m 	 46

http://www.stickyminds.com/sticky-note/references-226
http://techwell.com

 L I N K T O O U R A D V E R T I S E R S

Better Software (ISSN: 1553-1929) is published four

times per year: January, April, July, and October. Entire

contents © 2017 by TechWell Corporation 350 Corporate

Way, Suite 400, unless otherwise noted on specific

articles. The opinions expressed within the articles and

contents herein do not necessarily express those of the

publisher (TechWell Corporation). All rights reserved.

No material in this publication may be reproduced in

any form without permission. Reprints of individual

articles available. Call 904.278.0524 for details.

DISPLAY ADVERTISING
advertisingsales@techwell.com

ALL OTHER INQUIRIES
info@bettersoftware.com

Agile Dev, Better Software & DevOps East 14

Apica 27

Delphix 13

iSQI 37

Parasoft 35

Perfecto 34

QASymphony 15

QMerty 3

Ranorex 11

RapidValue Solutions 29

Sauce Labs 22

SmartBear 4

SQE Training—eLearning 36

SQE Training—On-Site Training 42

STARCANADA 28

STARWEST 2

Tricentis 23

TurnKey 48

Check out the TechWell Happenings
YouTube Playlists.

Hundreds of interviews, lightning talks, and STAREAST,
STARWEST, and Better Software conference presentations
are grouped by topic, so it’s simple to take control of your
learning experience.

Covering software testing and development topics ranging
from mobile testing to enterprise-level agile development
and pretty much everything in between, TechWell Happen-
ings Playlists deliver expert-level knowledge directly to you,
for free, whenever you want it.

Visit well.tc/TWHapps to subscribe to the TechWell Hap-
penings Channel so you won’t miss out on the newest
interviews and TechWell conference presentations.

C A N ’ T AT T E N D A T E C H W E L L C O N F E R E N C E ?

WE’VE GOT YOU COVERED!

B E T T E R S O F T W A R E T e c h W e l l . c o m 	 47

mailto:advertisingsales@techwell.com
mailto:info@bettersoftware.com
https://well.tc/wchp
http://bit.ly/2pHIjLd
https://www.delphix.com/solutions/test-data-management
http://www.isqi.us
https://parasoft.com/iot
http://info.perfectomobile.com/selenium-automation-essential-guide.html?utm_source=egs-bsm
https://www.qasymphony.com
http://www.qmetry.com
https://www.ranorex.com
http://www.rapidvaluesolutions.com/accurate
https://saucelabs.com
https://smartbear.com/lp/ready-api/free-trial/?sr=bswmag&md=ad
https://well.tc/wchf
https://well.tc/wchx
https://well.tc/wchn
https://well.tc/wche
http://tricentis.com/better-software
http://turnkeysolutions.com/free-assessment
http://well.tc/TWHapps
https://well.tc/twplaylists
https://well.tc/twplaylists
http://techwell.com

Learn how ACCELERATE test cycles,
MITIGATE risk, and DRIVE DOWN costs.

In a short 30-minute assessment, our test automation
experts can tell you how test automation with test data
on-demand delivers low risk, high quality releases faster.

Plus, use our simple ROI Calculator to give you an indication of how much you
can save with TurnKey test automation.

turnkeysolutions.com/free-assessment/ | 844.428.4678

C

M

Y

CM

MY

CY

CMY

K

Better Software Ad Q3-Final.pdf 1 6/5/17 11:29 AM

http://turnkeysolutions.com/free-assessment

